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ABSTRACT

Several advances are made toward a microelectromechanical (MEMS) acoustic direction-
finding sensor based on the Ormia ochracea fly’s ear. First, linear elastic stiffness models are
presented and then validated by using a nanoindenter to measure the sensor’s stiffness directly.
The measured stiffness is highly linear, and the resonant frequencies are correctly predicted by
the models presented. Additional nanoindenter results suggest that the sensor can be exposed
to at least 162 decibel sound pressure level with no loss of function. Next, an improved capac-
itive readout system using branched comb fingers is presented. This design is shown to double
electrical sensitivity to motion. Finally, it is shown that residual stress-induced curvature in the
sensors greatly reduces their sensitivity by effectively shrinking the readout capacitors. A sim-
ple model of this curvature is presented and then verified by measurements. This model offers
an extremely straightforward means of predicting curvature in similarly fabricated structures.
It is also shown that perforations in the sensor’s structure have no effect on curvature. The re-
sults presented here provide several essential tools for the continued development of the MEMS
acoustic direction-finding sensor.
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CHAPTER 1:

Introduction

There is an ongoing effort to develop a low-power, low-cost, lightweight micro-scale acoustic
direction-finding sensor inspired by the hearing system of the parisitoid fly Ormia ochracea.
Such a sensor would have countless applications both civilian and military. Potential uses
include hearing aids, communication devices, sniper detection, aerial surveillance, and even
monitoring of personnel exposure to Traumatic Brain Injury.

The feature of Ormia ochracea that makes it so intriguing is its exquisitely size-efficient direc-
tional hearing ability, described in a seminal paper by Miles et al. [1] and subsequent papers by
Robert et al. [2,3]. The fly’s essential feature is that its two eardrums, or tympana, are mechan-
ically coupled by a flexible bridge. In this configuration the tympana can vibrate in two normal
modes in response to incident sound: a “bending” mode, in which the tympana vibrate in phase,
and a “rocking” mode, in which they vibrate out of phase. When the eardrums are excited by
the sound field, the amplitude of the bending mode depends on the sum of the forces acting on
the two eardrums, while the rocking mode depends on the difference between the forces [1].
The coupling effectively amplifies the differences in intensity and phase between the two ears,
enabling the fly to determine its host’s azimuth to an accuracy of two degrees [4]. A simplified
model of the fly ear physics is given by Denny [5].

1.1 The state of the art
Several attempts have been made to develop Ormia ochracea-inspired systems, but no one has
yet replicated the physics of the fly’s ear in a sensor with fully integrated electronic readout.
Some have only partially replicated the fly ear physics by using just one of the two vibra-
tion modes, in essence building a pressure-gradient microphone. For example, Miles and Hoy
presented a rocking mode-only sensor [6], and Touse et al. presented a bending mode-only sen-
sor [7]. Both of these approaches require an additional reference microphone in order to extract
directional information.

Others have presented Ormia sensors using a capacitive back-plate readout, as in a condenser
microphone, or more commonly an optical readout. A capacitive back-plate polysilicon de-
sign was shown by computer simulations to feature the desired interaction between rocking
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and bending modes as reported by Gibbons and Miles [8]. This design was awarded a U.S.
patent [9]. A similar design was presented by Saito et al. and Ono et al. [10, 11]. However, due
to challenges with the capacitive readout, more recent efforts have used optical readout [12].
Several Ormia-type optically read sensors have been reported [13–19]. In particular, Liu, Yu
and others have proposed a design consisting of a pair of coupled circular diaphragms with
fiber optic interferometric readout [20–24]. A brief review of work up to 2009 was presented
by Miles et al. [12]. In related work, Intel Corp. has patented a MEMS directional sound
sensor involving two separate microphones with signal processing to artificially increase the
phase and time differences between them [25]. The fly’s ear has even inspired radio-frequency
direction-finding sensors using electronically coupled antennas analogous to the fly’s mechani-
cally coupled ears [26–28].

Our goal has been to develop a micro-scale acoustic DF sensor that reproduces the essentials of
the Ormia physics, with a fully integrated capacitive readout system. Continuing work begun
by Touse [29] and others [30–35], the present focus has been understanding the structural me-
chanics and improving the electrical signal output. This dissertation reports recent progress in
those areas.

1.2 A brief description of the sensor
This section briefly introduces the sensor. A more thorough description of its design, fabrica-
tion, and operation is given in Touse’s dissertation [29]. The sensor’s structure is a simplified
version of the fly’s eardrum, having two relatively stiff wings connected by a bridge that can
bend, which is in turn mounted on a pair of legs that can twist. A typical example is shown in
Fig. 1.1. The entire “H”-shaped structure is free-standing except at the ends of the legs, and
the substrate beneath the structure is etched away so that the wings are free to oscillate out of
the device plane. The combination of bridge and legs results in two normal modes of vibration
(rocking and bending) analogous to those in the fly’s ear as shown in Fig. 1.2 [29].

To detect the vibration of the wings, it is necessary to read out the nanometer-scale displace-
ments that occur as the wings respond to acoustic signals. As mentioned above, most re-
searchers have employed an optical readout for this purpose, while in some cases a condenser
microphone-style capacitive back plate has been proposed. The capacitive readout has the ad-
vantage of a much lower profile compared to an optical readout which requires external lasers
or fiber optics; however, the condenser microphone type has proven difficult to fabricate [12].
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Figure 1.1: A typical acoustic DF sensor. In this example, each wing has capacitive readout
comb finger banks on three sides. The inset shows a closeup of the comb fingers.

To keep the low profile of the capacitive readout and avoid the fabrication complexities of the
condenser back plate, the sensors studied here employ banks of capacitive comb fingers on the
wings, interlaced with a matching set of fixed fingers as shown in Fig. 1.1 [7]. With this con-
struct, movement of the wings results in a changing capacitance between the moving and fixed
fingers.

In the laboratory, this changing capacitance may be read out by means of a suitable capacitance-
sensing circuit such as the commercially available Irvine Sensors MS3110 Universal Capacitive
Readout integrated circuit. This circuit uses a tunable capacitance bridge to produce a voltage

3



that varies linearly with varying input capacitance [7]. However, the final version of the sensor
is intended to have the readout circuitry embedded in the chip with the moving parts, taking
full advantage of MEMS technology to produce a truly integrated low-profile device. It is this
potential for integration that makes the capacitive readout so attractive.

(a) (b)
Figure 1.2: The “rocking” mode (a) and “bending” mode (b) of the MEMS sensor, obtained
from a COMSOL Multiphysics finite element model. Displacement is greatly exaggerated for
clarity; actual displacement of the wingtips is typically much less than one percent of the length
of the sensor. Capacitive comb fingers are not shown here.

For the last several generations of development, the sensor and comb fingers have been con-
structed from the single-crystal silicon device layer of a silicon-on-insulator (SOI) wafer, using
the SOI Multi-User MEMS process (SOIMUMPs) [36]. In this process, the device layer used
for fabricating the wings and comb fingers is either 10 µm or 25 µm thick, and is mounted on a
substrate wafer 400 µm thick with a 1 µm silicon dioxide (glass) layer between.

1.3 Overview of present research
The work presented in the following chapters consists of several advances toward a working
Ormia ochracea-inspired directional microphone. Each chapter is a more or less self-contained
study with its own discussion, results, and conclusions. Methods used include analytical mod-
eling, numerical finite-element modeling, and laboratory observation of fabricated sensor pro-
totypes. In most cases, all three methods have been used together. The results will enable future
sensor designs to be optimized in various ways, specifically: by choosing sensor dimensions
to get the desired separation between rocking and bending frequencies; by enabling inclusion
of larger readout capacitors; and by maximizing the effective capacitor size by reducing the
curvature from residual stress.
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Chapter 2 presents analytical linear elastic stiffness models that may be used to estimate the
rocking and bending frequencies of a sensor, given its dimensions. These models are found
to agree with finite-element simulations. Moreover, the models are validated through direct
stiffness measurement of the sensor at a series of different locations along its length. Stiffness
is measured using a nanoindenter. The same instrument is also used to estimate the maximum
sound pressure the sensor can be exposed to without loss of function. Similar techniques could
be applied to other MEMS devices with multiple coupled structural components. The content
of this chapter has been published in essentially the same form in Sensors and Actuators A–

Physical [37] and was presented at the American Physical Society March Meeting 2012 [38].

In Chapter 3, a new design of readout capacitor is presented. This design uses branched comb
fingers in place of the typical straight fingers. The branched design incorporates a larger number
of comb fingers, each of which is much shorter than the corresponding straight fingers. The re-
duced length makes them more durable, while the greater number increases the overall capacitor
size. The new capacitor is modeled analytically and through finite-element simulation. Mod-
els and laboratory measurements show that indeed the new design results in a more sensitive
readout. Similar branched capacitors could be used in any MEMS device requiring readout of
small out-of-plane displacements. The material in this chapter, in substantially the same form,
has been submitted to the Journal of Microelectromechanical Systems and is presently under
review for publication [39].

Chapter 4 investigates residual stress-induced curvature in the acoustic DF sensor. Curvature is
important because it reduces the effective size of the wingtip capacitors as the wings curl away
from the fixed comb fingers. This size reduction lowers the sensitivity of the readout system.
First, it is shown that the curvature is spherical. This is done through analytical and numerical
models verified by direct measurement of curvature in different sensors. Next it is shown that
perforations in the wings have no effect on curvature. This is done by similar means, using
analytical reasoning and computer simulation followed by direct measurement of curvature in
sensors with and without holes. Finally, it is shown that a sensor with low curvature is in fact
much more sensitive than one with high curvature, when adjusted for the nominal capacitor
size. These findings highlight the importance of curvature in the sensor, and suggest that the
best way to reduce it without abandoning the SOIMUMPs process is by choosing the thicker 25
µm device layer.

As a group, these findings represent significant progress toward a functioning Ormia ochracea-
inspired directional sound sensor. The techniques and results presented here can be applied to
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produce a more efficient future sensor prototype. The results from Chapter 2 can be used to tune
the structure sizes for optimized frequency response in the bending and rocking modes, as well
as to estimate tolerance of extreme sound pressures. The findings in Chapter 3 and Chapter 4
together promise an order of magnitude increase in electrical sensitivity. It is sincerely hoped
that these advances will result in a future sensor with an electronically detectable, direction-
dependent response.
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CHAPTER 2:

Nanoindenter measurements validate linear elastic

sti�ness models

Note: the content of this chapter has been published in substantially the same form in the

Elsevier journal Sensors and Actuators A–Physical [37]. Much of this work also was presented

at the American Physical Society March Meeting 2012 [38].

In the MEMS acoustic direction-finding sensor, the directionally dependent response is created
by the interaction of the bending and rocking vibration modes. To make progress developing a
working sensor, it is necessary to understand how the various structural components combine
to produce the vibration modes. In particular, to maximize the directional dependence of the
sensor, it is essential to be able to optimize the frequency separation between the two modes. To
do that, it is necessary to make reasonable estimates of the resonant frequencies of a proposed
sensor design. Here, analytical models are presented to estimate resonant frequencies for the
two modes, specifically a simple beam bending model for the bending mode and a torsion
model for the rocking mode. These models assume linear stiffness of the material under the
sensor’s expected loading conditions. To validate this assumption and the stiffness models, a
nanoindenter is used to directly measure the sensor’s stiffness at various points. In addition, the
nanoindenter is used to estimate the maximum sound pressure the sensor can tolerate without
damage.

Nanoindenters are commonly used on micro-scale cantilever beams to investigate the elasticity
and hardness of the beam material as originally described by Weihs et al. [40]. Nanoindenters
have also been used to mechanically actuate MEMS components, either to investigate behavior
of electrical contacts [41–43], to investigate failure modes of microstructures [44], or to assess
mechanical stability [45]. A nanoindenter transducer has even been incorporated into a hand-
built apparatus to measure the stiffness of single cantilevers [46]. Here a nanoindenter is used
to analyze a more complex MEMS structure whose stiffness varies across its surface due to
simultaneous bending and twisting motions of several coupled components—namely the Ormia

ochracea-inspired acoustic direction-finding sensor.
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The sensor used in this study is pictured in Fig. 2.1. It is constructed from the single-crystal
(100) silicon device layer of a silicon-on-insulator (SOI) wafer, using the SOIMUMPs standard-
ized commercial micromachining process [36]. The lateral and longitudinal axes of the sensor
are oriented along 〈110〉 crystal directions. The silicon layer is nominally 10 µm thick, but was
measured to be 9.5 µm thick using a KLA–Tencor AlphaStep D–120 stylus profiler. Notation
and values for the sensor parameters are listed in Table 2.1.

Legs

Bridge

Wing

Comb finger
capacitors

x
<110>

Figure 2.1: A photograph of the sensor used in this study. The two wings are coupled by the
bridge, which is connected to the substrate by the legs. The legs act as torsion springs and each
end of the bridge acts as a flexible cantilever beam. The sensor is 2.5 mm from wingtip to
wingtip.

Since the vibrational response of the sensor depends on the stiffness of the bridge and legs, it is
useful to measure the stiffness directly. Spring constants can be determined by measuring reso-
nant frequencies with sound excitation, but for a device with multiple resonance modes, it may
be difficult to associate each frequency with the corresponding structures. The advantage of the
nanoindenter technique is that it enables precise, direct measurement of stiffness anywhere on
the sensor. By comparing the measured stiffness with simple models, it is possible to identify
the source of each resonant frequency. The nanoindenter can also be used to explore the maxi-
mum loads the sensor can withstand, when it may not be practical to generate such high loads
using sound pressure or other means.
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In the following, the MEMS sensor’s stiffness vs. location of an applied loading force are pre-
dicted using analytical and numerical linear elastic models. Those models are used to predict
the resonant frequencies, and their validity is checked by comparing with nanoindenter mea-
surements. A nanoindenter test is also used to estimate the maximum sound pressure the sensor
can tolerate.

Table 2.1: Sensor parameters. Young’s modulus and shear modulus are treated as scalar quanti-
ties [47]. The comb finger capacitors are modeled as a 100 µm extension of each wing tip with
one quarter the density of silicon.

thickness t 9.5 µm
bridge length 500 µm
bridge width wb 300 µm
leg length l 100 µm
leg width wl 40 µm
wing length 1250 µm
wing width 1500 µm
Young’s modulus E 169 GPa
shear modulus G 50.9 GPa
density 2330 kg/m3

2.1 Linear elastic models
The MEMS sensor can be modeled as a collection of springs acting in series. To simplify the
analysis, only points along the extended centerline of the bridge (defined as the x axis) are
modeled. The overall stiffness k(x) is the individual spring constants ki(x) added in series:

1
k(x)

= ∑
i

1
ki(x)

. (2.1)

The three springs of the sensor model represent bending of the bridge, twisting of the legs, and
vertical flexing of the legs and bridge. The vertical flexing does not affect the sensor’s operation,
but it is important for the nanoindenter study.

2.1.1 The bending mode
To estimate the bending stiffness, the bridge is modeled as a cantilever beam of rectangular
cross section, fixed at the legs and free at the point where the load is applied (Figure 2.2). For a
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cantilever of width w and thickness t < w, acted on by a transverse load F at a distance x from
the fixed end, the deflection d is [48]

d(x) =
4Fx3

Ewt3 , (2.2)

where E is the Young’s modulus of the material. Strictly speaking, this model is only valid
up to the end of the bridge. For a cubic material such as silicon, E may be taken as a scalar
if all stresses are in the same crystal direction, as they are in the simple beam bending model.
Because both of the MEMS sensor axes are oriented along 〈110〉 directions, the scalar Young’s
modulus is Ex = Ey = 169 GPa [47]. The bending stiffness of the cantilever kb = F/d is then

kb(x) =
Ewbt3

4x3 . (2.3)

where wb is the width of the bridge.

F

d
x

Figure 2.2: A simple model of the sensor’s bending mode. The bridge is a flexible cantilever
beam fixed on one end and free on the other end.

2.1.2 The rocking mode

To model the rocking stiffness, the bridge is treated as a rigid beam mounted on a pair of torsion
springs (the legs) with rectangular cross section (Figure 2.3). The angular deflection of a pair
of torsion springs acting in parallel is [48]

φ =
1
2

τl
GJ

,

where τ is the torque applied, l is the length of each spring, G is the shear modulus of the
material, and J is the torsion constant, a function of the cross-sectional dimensions of each
spring with dimensions of length raised to the fourth power [48].
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φ
F d(x)

x

Figure 2.3: A simple model of the sensor’s rocking mode. The legs twist while the bridge
remains rigid.

The torsional stiffness for the rocking mode is

κr =
τ
φ
=

2GJ
l

. (2.4)

The torsional stiffness is necessary to estimate the resonant frequency. However, the nanoin-
denter measures linear stiffness, which depends on the position of the force. If a transverse load
F is applied to the bridge at a distance x from the spring, the torque about the rotation axis is
τ = Fx. For a small twisting angle φ , the displacement of the cantilever at x is

d(x) = φx =
Flx2

2GJ
.

Then the linear rocking stiffness kr = F/d is

kr(x) =
2GJ
lx2 . (2.5)

For a rectangular torsion spring of cross-sectional width wl and thickness t with wl ≥ t, the
torsion constant J is [48]

J = wlt3
[

1
3
−0.21

t
wl

(
1− t4

12w4
l

)]
.

As with the Young’s modulus, the shear modulus G may be treated as a scalar in a silicon crystal
with the shear stresses about 〈110〉 directions. In this case G = 50.9 GPa [47].

It is clear from Equations 2.3 and 2.5 that both bending and rocking stiffnesses diverge at the
center of the bridge, where x becomes small. Clearly the actual stiffness of the sensor cannot
be infinite at x = 0. If measurements there are to be analyzed, a third stiffness term must be
considered.

11



2.1.3 The flexing mode
The flexing stiffness k f originates from flexing of the sensor’s legs and bridge in the out-of-plane
direction, and is not straightforward to compute analytically with a high degree of accuracy due
to the relatively complex geometry of the sensor. However, an order-of-magnitude estimate is
still useful. To that end are presented two rough but simple analytical models.

In the first model, the bridge is treated as rigid so that bending occurs only in the legs. In this
model, the legs are a pair of fixed-guided cantilever beams acting in parallel, connected by a
rigid beam. The corresponding spring constant is given by [48]

k f =
2Ewlt3

l3 , (2.6)

where l, wl , and t are the leg dimensions. Clearly, since the bridge is not in fact rigid, this model
overestimates k f .

Alternatively, the leg-bridge-leg system may be treated as one long narrow beam of constant
width, fixed at both ends. This approach is also rough since the width of the “beam” actually
increases greatly at the bridge. Assuming a single beam of length 2l +wb, the corresponding
spring constant is [48]

k f =
16Ewlt3

(2l +wb)3 . (2.7)

Because the leg width is used, this model underestimates the stiffness.

To evaluate these two models, they are compared with the finite-element model (FEM), which
will be described in more detail at the end of this section. For purposes of comparison, the
deflection for each model is plotted as a function of position along the leg-bridge-leg system
in response to a downward point load of 60 µN at the bridge center. In each case, the deflec-
tion is easily computed by solving the beam equation [48] d2z/dy2 =−M/EI with appropriate
boundary conditions, where z is the deflection, y is the position along the leg-bridge-leg system,
and M is the bending moment. Figure 2.4 shows z(y) for both of the analytical models and the
FEM through the legs and bridge. As expected, neither analytical model is accurate. However,
between the two of them, upper and lower bounds can be set on the flexing stiffness. Since the
rigid-bridge model must overestimate the stiffness, and the long-beam model must underesti-
mate it, it is certain that the actual flexing stiffness will lie somewhere between. As Figure 2.4
shows, the FEM bears this out. As will be shown below, the FEM provides the best estimate of
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the actual flexing stiffness. However, to continue with the analytical model, it is necessary to
choose either the rigid-bridge or the long-beam model. In fact, the long-beam stiffness is much
closer to the FEM stiffness, and thus likely to be more accurate. Moreover, it conforms much
more closely to the bending shape of the FEM than does the rigid-bridge model, as illustrated
in Figure 2.4. For those reasons, the long-beam model is used from here on.
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Figure 2.4: Comparison of the two analytical flexing models with the finite element model
(FEM). The vertical scale is exaggerated. In each case, a 60 µN point load is applied at the
bridge center, and the modeled flexing stiffness is the load divided by the absolute deflection.

With all three stiffness modes accounted for, Equation 2.1 becomes

1
k(x)

=
1
kb

+
1
kr

+
1
k f

=
4x3

Ewbt3 +
lx2

2GJ
+

(2l +wb)
3

16Ewlt3 . (2.8)

Once the numerical values for the various parameters (listed in Table 2.1) are inserted, the
analytical model is complete. Figure 2.5 shows the relative contributions of each mode to the
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overall stiffness along the x axis. Note that the overall stiffness is dominated by the smallest
individual stiffness term based on Eq. (2.8), and also that the contribution from each mode
becomes vanishingly small in the region where its model breaks down, i.e. close to x = 0 for
the rocking and bending modes, and at large x for the flexing mode.
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Figure 2.5: A logarithmic plot of the modeled stiffness components and the overall stiffness
in the analytical model of the MEMS sensor. At any given position on the sensor, the overall
stiffness is governed by the smallest of the individual terms.

2.1.4 Estimating resonant frequencies

From the individual modeled stiffness terms, it is possible to estimate the resonant frequencies
of the corresponding modes. The resonant frequency fr of the rocking mode can be estimated
using

fr =
1

2π

√
κr

Ir
(2.9)

where κr is the torsional stiffness from Equation 2.4 and Ir =
∫

V ρr2dV is the rotational moment
of inertia of both wings rotating together, which for this sensor is 7.84×10−14 kg m2 including
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the contribution from the comb fingers. Using the values from Table 2.1, the rocking frequency
is estimated to be 1.79 kHz.

A similar method can be used to estimate the resonant bending frequency

fb =
1

2π

√
κb

Ib
, (2.10)

where Ib is the moment of inertia of a single wing and is equal to Ir/2. The torsional bending
stiffness κb can be estimated using Equation 2.3 if the location of the force is known. Since
the sensor is driven by sound pressure, the force is located at the center of mass xCM of the
wing-bridge combination. The torsional stiffness is then

κb = kb(xCM)x2
CM =

Ewbt3

4xCM
. (2.11)

This model must underestimate κb because in reality the wing is wider and therefore stiffer
than the bridge. As with the flexing stiffness, an alternative would be to treat the wing as rigid;
however, that treatment is much more complex and not necessarily more accurate since the
wing is not in fact completely rigid. Using the model described here, the estimated bending
frequency is 2.83 kHz.

2.1.5 Simulations
To supplement the analytical model, a finite element model (FEM) of the MEMS sensor was
created using COMSOL Multiphysics simulation software (the model is described in more de-
tail in Appendix B). The directional Young’s modulus, shear modulus, and Poisson’s ratio were
entered using the 〈110〉 constants for silicon [47]. To simplify the model geometry, each comb
finger capacitor bank was modeled as a solid piece of reduced-density silicon. This simplifi-
cation greatly reduced the complexity of the model without altering the rotational moment of
inertia.

Even though the nanoindenter tip is much less than one micron in diameter, it may be modeled
as a much larger circle. It has been shown [49] that the stresses in a thin plate caused by a
load distributed over a small radius r0 are similar to those that would obtain if the force were
distributed over a larger radius r′0 =

√
1.6r2

0 + t2−0.675t, where t is the thickness of the plate.
In this case, r0� t and we may use r′0 = 0.325t ≈ 3 µm. Using the larger value for the tip size
enabled coarser meshing without sacrificing accuracy.
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A series of simulations were run over different nanoindenter tip locations along the lateral (x)
axis of the sensor. For each location, a vertically downward boundary load was applied at the
location of the tip, and the composite stiffness k(x) was recorded as the load divided by the
displacement. The FEM predicted a stiffness of 2.35 kN/m at x = 0, which differs from the two
analytical models by factors of three and five respectively as discussed earlier (see Fig. 2.4).
However, this study is most concerned with the stiffness at larger x, where the contributions
from the rocking and bending modes dominate. At x = 300 µm, the analytical model differs
from the FEM by 8%, and the models continue to converge with increasing x.

In addition to the stiffness study, the FEM was used to predict the eigenfrequencies of the sen-
sor’s vibrational modes, obtaining 1.53 kHz for the rocking mode and 2.91 kHz for the bending
mode. These values are within 15% and 3%, respectively, of the analytical estimates. The
discrepancies can be partly attributed to the use of isotropic moduli of silicon in the analytical
models.

2.2 Nanoindenter measurements
Stiffness measurements were made using an Agilent G200 nanoindenter with the Dynamic
Control Module (DCM) head [50] and a diamond Berkovich tip with a radius specification
of ≤ 20 nm across. This tip was readily available, but any other tip could be expected to work
equally well for a study of MEMS surfaces in which the tip does not appreciably indent the
material. The G200 provides a motorized stage that positions the test sample under the tip to an
accuracy of 1 µm in each direction. Nanoindenter tip displacements can be measured to a preci-
sion of less than 0.01 nm, but may be as large as 500 µm, and available loads range from 50 nN
to 500 mN. A schematic of the nanoindenter is shown in Fig. 2.6.

There were several instrumentation parameters for this study. Because the composite stiffness of
the MEMS sensor ranged from over 2000 N/m at the center to just a few N/m near the wingtips,
one of the primary considerations was the sensitivity of the nanoindenter to surface contact. The
G200’s “surface detection stiffness criteria” parameter allows the user to determine the surface
stiffness that will trigger the instrument’s surface detection routine. Repeated trials with various
choices of this parameter confirmed that the lowest surface stiffness that was reliably detected
by the instrument was about 20 N/m. Based on this limitation, the study was restricted to the
parts of the MEMS sensor where the modeled composite stiffness was higher than 25 N/m,
corresponding to values of x less than 500 µm.
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Figure 2.6: A schematic of the Agilent G200 nanoindenter, from the user manual.

Another key testing parameter was the maximum load applied during each test. Higher loads
produced somewhat cleaner data, but also greater deflection of the MEMS surface. Since ex-
cessive deflection would lead to the MEMS surface contacting the substrate below and could
induce a nonlinear stiffness response, the maximum load was chosen to result in a deflection
less than the thickness of the silicon layer (9.5 µm) at the sensor’s wingtip. Based on the analyt-
ical and finite element models, this maximum was determined to be about 85 µN at x = 500 µm.
Ultimately, a conservative yet productive maximum load of 60 µN was chosen for each test.
Measured vertical displacement of the sensor surface ranged from 30 nm with the load applied
at the center of the bridge to over 600 nm with the load applied beyond the end of the bridge.

Because in normal operation the deformation of the MEMS sensor is purely elastic, the quantity
of interest is the elastic stiffness. In a typical nanoindentation test, the loading curve is nonlinear
due to combined plastic and elastic deformation. On unloading, however, the deformation is
purely elastic and thus the linear elastic stiffness is simply the slope of this curve just after
unloading begins. When the curve does not have a well-defined slope, a power law fit can
produce more precise measurements of elastic stiffness [51], but for this MEMS study the curve
is linear enough to use a linear fit. Figure 2.7 shows two tests taken at different positions on
the sensor. Figure 2.7a shows a test taken at the stiffest point, i.e. x = 0. Even though plastic
deformation leads to visible nonlinearity, there is still a clear linear region on unloading, and
thus a well-defined linear elastic stiffness. In the vast majority of tests, the elastic stiffness is
even better defined. In most cases, the plastic deformation is dwarfed by the elastic deformation
as shown in Figure 2.7b. In this example, where x= 325 µm, the loading and unloading portions
of the curve are nearly overlapped, with their slopes differing by only 1%. This linear elastic
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response is critical to this research because the analysis depends on a well-defined stiffness at
each point.
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Figure 2.7: Sample nanoindenter tests conducted at different points on the MEMS sensor illus-
trate the linear elastic response. The elastic stiffness is the slope of a line fit to the data just
after unloading begins. (a) x = 0, the stiffest part of the MEMS sensor. (b) x = 325 µm, a more
typical test.

2.2.1 Stiffness measurements
To establish the stiffness as a function of position on the sensor, tests were conducted at intervals
of 5 µm along the x-axis and the elastic stiffness was computed for each test. Figure 2.8 shows
the results plotted as a function of distance from the rotation axis, along with the results from the
analytical model and FEM. At x = 0, the numerical model is clearly superior to the analytical
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model. The discrepancy between measurement and FEM is 12% at that point, whereas the
analytical model underestimates the stiffness by a factor of three. At larger x, the measurements
validate both models. At x = 500 µm, the analytical model differs from measurements by 9%
and the FEM by 6%. The nanoindenter measurements definitively show where each model is
valid.
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Figure 2.8: Comparison between the analytical model, the finite element model, and the nanoin-
denter results.

To evaluate the individual stiffness components kr(x) and kb(x), a curve was fit to the measured
data using Matlab with the Ezyfit open-source fitting tool. The curve fit was based on the
analytical expression in Equation 2.8 and given by

1
k(x)

=
(x− x0)

3

a3
+

(x− x0)
2

a2
+

1
a1

, (2.12)

where a1, a2, and a3 are parameters and an x offset is included to account for any systematic
error in the coordinates of the stiffness tests. The curve in Equation 2.12 was fit to two separate
data sets, one from the left side of the MEMS sensor and the other from the right side, as shown
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in Figure 2.9. Table 2.2 lists the values for the parameters and the correlation coefficients R for
both fits. From the curve fit parameters, it is possible to estimate the resonant frequencies of
the rocking and bending modes. By matching the fit parameters to the corresponding values in
the analytical model, it is straightforward to estimate the torsional stiffness for each mode and
thence the resonant frequencies.
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Figure 2.9: Equation 2.12 fit to the nanoindenter measurements: (a) left side of sensor; (b) right
side. In both cases the correlation coefficient R is greater than 0.9999 using the fit parameters
listed in Table 2.2.

The resonant frequencies estimated from the measured stiffness are listed in Table 2.3 along
with the estimates obtained from the analytical and finite element models. Also listed for com-
parison are the resonant frequencies of an identical sound sensor as measured by a laser vibrom-
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eter with the sensor excited by an external sound source. The sensor used in the nanoindenter
study could not be removed intact from the mount for laser vibrometer testing. Because there
is variation in resonant frequencies even between ostensibly identical sensors, the vibrometer
results should be viewed as another estimate rather than an exact measurement.

Table 2.2: Parameters for the curves fit to the data from the left and right sides of the MEMS
sensor. Values are in SI units except x0.

Fit parameter Left side fit Right side fit
a1 (= k f ) 2.09×103 2.10×103

a2 (= 2GJ/l) 9.05×10−6 8.95×10−6

a3 (= Ewbt3/4) 1.72×10−8 1.94×10−8

x0 3.64 µm -2.25 µm
R 0.99994 0.99997

Table 2.3: Resonant frequencies from the analytical model, from the FEM, estimated from the
measured stiffness, and directly measured using a laser vibrometer.

Rocking frequency (kHz) Bending frequency (kHz)

Analytical model 1.79 2.83
FEM 1.53 2.91
Estimated from stiffness 1.71 3.67
Vibrometer 1.41 2.80

The discrepancy between modeled, estimated, and measured values is greater for the bending
mode frequency, which is to be expected since the measurements were taken in regions where
the bending mode makes only a small contribution to the overall stiffness (as mentioned earlier,
measurements were restricted to locations where the composite stiffness was above 25 N/m
and was dominated by the rocking mode). Nevertheless, the estimates are close enough to
suggest that the nanoindenter method is a valid means of estimating the resonant frequencies of
a MEMS device. Also, it must be emphasized that the vibrometer measurements alone cannot
distinguish the frequencies by their sources. The only way to associate each frequency with the
corresponding physical structures is through modeling.
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2.2.2 High load testing
The final test conducted with the nanoindenter was designed to estimate the maximum sound
pressure level the sensor can tolerate without fracturing. For this measurement, the nanoinden-
ter’s DCM head was replaced by the XP head to allow for loads up to 500 mN [50]. The load
was applied at the center of one of the sensor’s wings, and was set to an arbitrary high value in
the expectation that the sensor would fracture during the loading process. This fracture would
be indicated by the load suddenly dropping to zero as the displacement continued to increase.
However, the expected fracture did not occur. Instead, as the load was increased, the displace-
ment eventually stopped increasing, as shown in Figure 2.10. The maximum load attained was
4.5 mN, and the ultimate displacement was about 32 µm. The halt in displacement suggests that
the sensor had made contact with the side walls of the trench beneath.
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Figure 2.10: Failure testing of the MEMS sensor. Loads are two orders of magnitude higher
than in the stiffness testing, and the response here is clearly nonlinear (compare to Figure 2.7).
At about 32 µm, the load spikes, suggesting that the sensor has made contact with the substrate
below.

The sensor remained intact, and subsequent inspection with an optical microscope showed no
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visible damage. Moreover, repeated similar measurements showed identical results, suggesting
that the sensor was not permanently affected by the test loads. Unfortunately, it was not possible
to remove the sensor intact from the nanoindenter mount in order to directly test its acoustic
response after the failure testing.

Even though the exact fracture load was not established, these results show that the sensor can
withstand a sound pressure level (SPL) at least equivalent to the nanoindenter test load. The
equivalent SPL is

SPL = 20log
(

Pequiv

Pref

)
(2.13)

where Pequiv is the equivalent acoustic pressure amplitude and Pref is the standard reference
pressure of 20 µPa. The acoustic pressure equivalent to the test load can be estimated as the
load divided by the wing area, in this case about 2400 Pa (note that this is several orders of
magnitude less than the yield strength of crystal silicon, 7 GPa [52]). The resulting SPL of
about 162 dB suggests that the MEMS sensor can tolerate extremely high sound levels. Also,
it is important to note that the actual failure load for the sensor must be higher than the test
load used in the calculation. Thus the failure SPL for the sensor is higher than 162 dB. The
nanoindenter technique provides a means of simulating high sound pressures not practical to
generate in the laboratory.

Because the nanoindenter load is static, it does not perfectly simulate the dynamic stresses
from actual acoustic pressure. Nevertheless, this technique can be used to estimate the sensor’s
maximum tolerated sound pressure level.

2.3 Conclusions
The nanoindenter is a useful tool for investigating basic properties of simple MEMS structures.
Here a nanoindenter has been used to analyze several characteristics of a MEMS device with
multiple coupled flexible components. First, direct measurement of the stiffness can confirm an
overall linear response (i.e. Hooke’s law) over the range of loads likely to be experienced by
the sensor during operation. Second, by measuring the local stiffness at various points across
the device surface, it is possible to relate the structural components of the device to the cor-
responding resonant frequencies for each vibration mode. In both of those applications, the
nanoindenter validates analytical and numerical models. Third, the nanoindenter can be used
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to find the failure load of the MEMS device and thence the maximum tolerable sound pres-
sure level. Similar studies can be useful in analyzing other MEMS with coupled mechanical
components.
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CHAPTER 3:

Branched comb �ngers improve sensitivity to

out-of-plane motion

Note: the content of this chapter, in substantially the same form, has been submitted for publi-

cation to the IEEE/ASME Journal of Microelectromechanical Systems [39].

In this chapter, fabrication of a MEMS acoustic direction-finding sensor with substantially
higher sensitivity is described. The increased sensitivity is enabled by larger capacitance of
the sensor when the traditional straight comb finger capacitors are replaced by a branched ca-
pacitor design. The sensitivity increase is explained using a simple analytical model as well as
a finite element model that incorporates the fringe field effects. Finally, it is shown that the sen-
sitivity could be further improved by reducing the sensor’s residual stress-generated curvature
to increase the overlap between comb fingers.

The sensitivity of a capacitive readout system depends on how much the capacitance changes
with displacement. The size of the capacitance change in turn depends on the size of the capaci-
tors; for a parallel-plate capacitor, C ∝ A/d, where A is the plate area and d is the gap. In order to
maximize the sensitivity of the sensor’s readout system while complying with the given design
rules, comb fingers have until now been made as long, narrow, and close together as possible
within the SOIMUMPs design rules [36]: 2 µm wide and 100 µm long, with a 2 µm gap between
them [7]. For a given wing perimeter, there is a maximum number of these fingers that will fit
along the wing, and thus an upper limit on capacitance and sensitivity. In addition, experience
has shown that such long comb fingers are very susceptible to breakage during handling. An
example of these comb fingers was shown in Fig. 1.1, and is repeated here as Fig. 3.1.

The goal of this work was to increase the durability and size of the comb finger capacitors
without violating the design rules. To solve this problem, a branched comb finger design has
been developed using a larger number of shorter fingers. It is important to note that unlike the
lateral comb motion used in many other MEMS designs, the acoustic DF sensor uses out-of-
plane motion between comb fingers. Because the relative motion is out-of-plane, it is possible to
change the comb finger shape without affecting their function. An acoustic sensor incorporating
the branched design, shown in Fig. 3.2, should be more sensitive to sound than the version with
straight comb fingers due to the increased input capacitance.
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Figure 3.1: The acoustic DF sensor with straight comb fingers. Each wing has comb finger
banks on three sides. The inset shows a closeup of the comb fingers.

3.1 Measurements
The crux of this experiment was to compare the electronic output of the branched-finger sen-
sor to that of the straight-finger sensor, when both were exposed to the same acoustic signal.
Although this comparison was straightforward, there were two secondary considerations that
also required measurements to be made. Before comparing the electronic responses, it was
necessary to establish the relative mechanical vibration responses of the two sensors. A larger
mechanical response would be expected to produce a larger electronic output even if the ca-
pacitive readout system was not more sensitive. Because these sensors are designed to detect
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broadband signals, the vibrational or electrical response is defined as the peak area rather than
the peak height. In addition, to understand the results of the mechanical response and electronic
output comparisons, it was necessary to consider the permanent bending of the two sensors’
wings due to residual stress, and the effect of this bending on the comb finger capacitance.

Figure 3.2: The sensor with branched comb finger design. The fingers are shorter but more
numerous, and are mounted on thick spines. Including the comb fingers, the wings are the same
length and width as the other sensor. The inset shows a pair of interlaced spines, each with 25
pairs of comb fingers.

3.1.1 Mechanical response comparison
The first phase of the experiment was to identify and measure the mechanical resonances for
the straight-finger and branched-finger sensors. This was done by exposing each sensor to a
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computer-generated sound signal that swept a wide range of frequencies. The vibration response
spectra of the two sensors, shown in Fig. 3.3, were measured using a Polytec laser vibrometer
aimed at one wingtip.
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Figure 3.3: The vibration spectra (bending mode) of the two acoustic DF sensors. The sensor
with branched comb fingers has a smaller, wider resonance peak at a higher frequency. Full
width at half-maximum (FWHM) is shown for both sensors.

As mentioned earlier, each sensor is designed to have two normal modes (rocking and bending)
and therefore two resonance peaks; however, in both cases the rocking amplitude is negligibly
small compared to that of the bending and is not visible in the figure. This large difference in
peak height is due to the physics of the two normal modes [1]. The bending resonance peak for
the branched-finger sensor occurs at a slightly higher frequency, 2.7 kHz as opposed to 2.4 kHz
for the straight-finger sensor. This is expected because the branched-finger sensor has slightly
smaller mass; the wings are smaller to accommodate the larger size of the branched comb fin-
gers. In addition, this peak has smaller amplitude and wider bandwidth than the other, meaning
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that the branched-finger sensor does not respond as strongly to a pure tone at resonance, but
responds to a wider range of frequencies.

The wider peak is associated with greater damping through the relationship γ = ∆ω where γ
is the damping coefficient and ∆ω the full width at half-maximum (FWHM) of the peak [53].
A detailed analysis of damping is beyond the scope of this dissertation, but it is worth noting
that the damping coefficient of the branched-finger sensor is 1.5 times that of the straight-finger
sensor, while the perimeter of its comb finger array is 1.6 times longer. This similarity between
ratios suggests that the damping coefficient may be roughly proportional to the perimeter of the
comb finger capacitor.

3.1.2 Electrical signal

Having found the mechanical resonances for the two sensors, the next step was to measure their
electrical output. The primary measure of success for the branched-finger sensor was whether
it produced a larger electrical output than the straight-finger sensor, given the same acoustic
input signal. To assess this, each sensor was exposed to a computer-generated sound signal
and recorded the MS3110 output signals from both. The MS3110 delivers a voltage that varies
linearly with changes in capacitance so that when the sensor wing oscillates harmonically, the
output voltage follows the motion as shown in Fig. 3.4. The electronic response from each sen-
sor was recorded by sweeping the incident sound frequency from 2.2 to 3.0 kHz. The measured
electronic output spectra for the sensors are shown in Fig. 3.5.

From Fig. 3.5, it is clear that the branched-finger sensor’s peak contains a much larger area than
that of the straight-finger sensor (compare Fig. 3.5 to Fig. 3.3). This result shows that compared
to the straight-finger sensor, the branched-finger sensor responds more strongly to a broadband
sound signal due to the higher bandwidth.

3.1.3 Curvature measurement

To fully understand the mechanism for the increased electronic response, it was necessary to
measure the residual stress curvature in both sensors to account for the comb finger overlap
in both cases. It is obvious that the capacitance should depend on the overlapped area of the
opposing surfaces of the comb fingers. What is not obvious is the fact that in these particular
sensors, those opposing surfaces do not completely overlap due to curvature of the two wings
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Figure 3.4: The output voltage of the electronic readout circuit during a typical measurement.
The measured wingtip displacement from equilibrium is superimposed on a different scale.
Both waveforms are clearly sinusoidal and have the same frequency (2.4 kHz in this case) as
the acoustic drive signal. The similarity between the two waveforms confirms that the output
voltage varies linearly with the wingtip displacement.

resulting from the residual stress. In fact, measurements showed that the curvature is so great
that in most cases the fingers do not overlap at all, as sketched in Fig. 3.6.

To examine the effect of this curvature, the vertical offset between sensor wing and substrate
was measured at regular intervals along the comb finger banks. This was done by placing each
sensor under an optical microscope with a 100× objective lens. At each interval, the offset was
measured to the nearest micron using the difference in microscope focus settings between the
wing and substrate. Finally, the average offset and standard deviation were computed for each
sensor. The straight-finger sensor had an average offset of 20± 5 µm and the branched-finger
sensor had an average offset of 19± 4 um. The range of offsets for both sensors was 10 to
27 µm. These results, combined with the fact that the device layer is only 10 µm thick, show
that the moving and fixed comb fingers are for the most part not overlapped at all.
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Figure 3.5: The measured electronic output spectra of the two acoustic DF sensors. Full width
at half-maximum is indicated for both sensors.

It is interesting to note that the branched comb fingers do in fact appear to be more durable than
the straight fingers. After all other measurements were completed, the chip carrier containing
both sensors was inadvertently dropped onto a steel table from a height of approximately 25 cm.
Prior inspection had shown no damage to any of the comb fingers. After the drop, many of the
straight comb fingers were broken, but the branched fingers all remained intact. This result
provides anecdotal evidence that the branched design is in fact more durable as intended.

In order to understand the effect of comb finger design on capacitance, taking curvature into
account, both designs were analyzed and simulated as described next.

3.2 Discussion
The first assumption made in this study was that the branched capacitor design would function
essentially the same as a traditional straight comb finger design, when employed to sense out-
of-plane motion. This turned out to be correct, although the reason is not as straightforward as
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expected. The sinusoidal waveform shown in Fig. 3.4 was seen from both sensors, demonstrat-
ing that in both cases the electronic readout circuit produced a voltage that varied linearly with
sensor displacement. This observation indicates that the capacitance also varies linearly with
displacement.

Figure 3.6: A sketch of the corner of the straight-finger sensor wing. The residual stress-
generated offset between moving and fixed fingers is approximately to scale.

But it was also observed that the relative vertical offset between comb fingers is typically greater
than their thickness as illustrated in Fig. 3.6. How can this fact be reconciled with the linear
capacitance dependence on displacement? The hypothesis was based on the assumption that
out-of-plane displacement of the moving comb fingers would change the vertical overlap be-
tween opposing capacitor “plates” and thereby alter the effective surface area of the capacitor.
This was in fact the intended mechanism. But in fact this overlap is typically nonexistent. To
understand why the linear relationship remained, a simple analytical model was developed of
comb finger capacitance as a function of offset, when the offset is greater than the comb finger
thickness. To check the accuracy of this model, a finite element model was also built. In each
case the capacitance was modeled as a function of out-of-plane displacement.
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3.2.1 Analytical model

For the analytical model, let z be the displacement of the moving fingers above the fixed, where
the fingers have vertical thickness t equal to the thickness of the silicon device layer, and z > t

as depicted in Fig. 3.7. The moving and fixed fingers can be represented as the two plates of
a single large parallel-plate capacitor separated by a gap z− t. The surface area is taken to be
the area of the horizontal silicon surface of each plate (excluding the air gaps between fingers).
This area is just the product of the finger width w and the combined length l of all fingers in the
bank.

w

t
z

fixed "plate"

moving "plate"

gap

Figure 3.7: The two-plate model of non-overlapped comb fingers. The vertical offset between
moving and fixed fingers is z and the capacitor gap between the two “plates” is z−t. This model
applies to straight and branched comb fingers where z > t.

The capacitance of these virtual parallel plates is approximately

C(z) =
ε0wl
z− t

(3.1)

where ε0 = 8.85× 10−12 F/m is the permittivity of free space. The capacitance in Eq. (3.1)
is evidently not linear in the displacement z. However, over a sufficiently small range ∆z, the
capacitance change ∆C will be approximately linear. This condition is met in our measurements
because ∆z is on the order of nanometers, whereas z− t is typically on the order of microns.
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The change in capacitance with displacement is obtained by differentiating Eq. (3.1) as

|∆C|= ε0wl
(z− t)2 |∆z| , (3.2)

where z− t is approximately constant over the range ∆z. Thus the observed change in output
voltage (see Fig. 3.4), which varies linearly with ∆C according to the readout circuit design,
also varies linearly with ∆z.

3.2.2 Numerical model

To validate the two-plate approximation, a two-dimensional finite-element model was created
using COMSOL Multiphysics (for details, see Appendix B). The FEM simulated the vertical
cross-section of a bank of capacitor fingers at variable relative offset z. In this model z was
allowed to be greater or less than the device layer thickness t. During the simulation a positive
voltage is applied to the moving fingers and negative voltage to the fixed; the software computes
the resulting electric potential within the simulation volume. Two sample plots of the electric
potential for different values of z are shown in Fig. 3.8.

The roughly flat shapes of the equipotential lines in Fig. 3.8 validate the key assumption of the
two-plate model, namely that the moving and fixed banks can be approximated as thin charged
plates. The flatter the equipotential lines, the closer the analytical model should agree with the
FEM. Simulations for larger values of z produced less waviness, as seen in Fig. 3.8b compared
to Fig. 3.8a. Thus it is expected that the models will agree best when z is large. Conversely, as
z decreases toward t, the fingers begin to overlap and the two-plate model breaks down.

To compare the two-plate model with the FEM, the predicted capacitance per unit length c(z)

was examined in each case. From the two-plate model, this is obtained by dividing Eq. (3.1) by
the combined finger length l:

c(z) =
ε0w
z− t

(3.3)

where w is the finger width. From the FEM, the capacitance per unit length is derived from
the electrical energy stored in the capacitor using u = c(∆V )2/2, where u is the energy per unit
length and ∆V is the applied voltage difference. Finally, the z-dependence of c is found by
repeating the simulation for different values of z. To compare the two models, their respective
values for c(z) were plotted together as in Fig. 3.9. Also plotted for reference is the capacitance
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per unit length for z < t as estimated using vertical overlap of the combs:

c(z) =
ε0(t− z)

d
, (3.4)

where d is the gap between opposing fingers, 2 µm in this case.

(a) (b)
Figure 3.8: A 2D finite-element model of a comb finger bank cross-section, comb fingers shown
in white. Electric potential is indicated by the color spectrum and equipotentials are shown in
black. The offset z in (a) is 12 µm, and in (b) is 21 µm. With greater offset, the equipotentials
are straighter, indicating better agreement with the two-plate model of Fig. 3.7 and Eq. (3.3).

The FEM suggests that Eq. (3.4) underestimates the actual capacitance for z < t. This is ex-
pected because fringing effects are neglected. However, except for z very close to zero, the
fringe field appears to add a more or less constant capacitance until z approaches t, at which
point the elementary model breaks down. As z increases beyond t, the two-plate model of
Eq. (3.3) becomes valid. In fact, the larger z, the closer Eq. (3.3) agrees with the FEM, as
expected. Taken together, these observations suggest that the FEM provides the best overall
estimate of capacitance. However, the two-plate model appears to be reasonably good when
z is in the range 15 to 25 µm as measured in the acoustic DF sensors. Thus, Eq. (3.3) should
estimate the difference in electronic sensitivity between the two sensors.
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Figure 3.9: The capacitance per unit length c as a function of offset z between the two sides of
the capacitor bank. Here the comb finger thickness t = 10 µm. The elementary theory, Eq. (3.4),
is roughly valid where z < t but neglects fringe field effects. The two-plate theory, Eq. (3.3), is
reasonably accurate where z� t, and the FEM results are presumed valid everywhere.

3.2.3 Explanation of results

To use the two-plate model to compare the sensitivity of the two comb finger designs, the
electronic sensitivity for each can be defined as η ≡ |∆C/∆z|. Designating these quantities ηB

and ηS for the branched- and straight-finger sensors and using Eq. (3.2), their ratio is

ηB

ηS
=

lB
lS

(zS− t)2

(zB− t)2 , (3.5)

where lB and lS are the total length of all comb fingers for each sensor. This expression can be
greatly simplified by noting that the mean offsets for the two sensors differ by less than half
a micron. Thus zB− t and zS− t are approximately the same and may be canceled. With this
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simplification, the ratio of sensitivities becomes

ηB

ηS
≈ lB

lS
. (3.6)

Thus the branched-finger sensor, whose comb fingers have a greater combined length, are ex-
pected to produce greater output voltage for a given vibration amplitude.

To quantify the expected output difference, the values for the lengths must be inserted. The
sensor with branched fingers has 66.5 spines, each holding 25 pairs of 20 µm fingers for a total
length of 10.6 cm. The sensor with straight fingers has 500 finger pairs at 100 µm each for a
total length of 5.00 cm. Thus, the branched-finger system should have approximately twice the
output voltage for a given vibration amplitude. In fact, this is seen in the data already presented
in Fig. 3.5. The vibration peak of the branched-finger sensor is just about half as high as the
vibration peak of the straight-finger sensor as shown in Fig. 3.3. However, their electrical peaks
are roughly equal as shown in Fig. 3.5. Thus, the branched-finger sensor’s electronic sensitivity
to vibration is roughly doubled as predicted by Eq. (3.6).

But does this really result in a greater overall sensitivity? At first glance, it may appear that
even with this doubling, the branched-finger sensor’s response in Fig. 3.5 is no better than that
of the straight-finger sensor. However, it must be remembered that the sensors are designed to
detect broad-band sound signals, and the peak width is as important as the height. In fact, an
appropriate measure of the overall sensitivity of each sensor is the area under its resonance peak.
When this integration was performed for both sensors in the mechanical response spectrum, the
branched-finger sensor’s total response between 2.2 and 3.0 kHz was found to be 24% less than
that of the straight-finger sensor. But in the electronic response spectrum, the branched-finger
sensor’s integrated response was 32% greater. By this measure, the new design is clearly more
sensitive as well as durable.

3.2.4 Effect of curvature on sensitivity

The above results show that for the two sensors in this study, branched comb fingers produce
a greater electrical output. However, the measurements of the residual stress offset suggest a
means of improving the sensitivity by an additional order of magnitude or more. Because the
electronic sensitivity η is proportional to the slope of the c(z) curve shown in the FEM data of
Fig. 3.9, it is clear that the optimum offset z is wherever the slope is steepest. In the present case
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that is somewhere between 2 µm and the device thickness 10 µm. If z could be adjusted to be in
this range, the slope would be an order of magnitude higher than in the present sensors, where
z is predominantly in the range 14 to 25 µm. Probably the simplest way to reduce curvature
without adopting a whole new fabrication process would be to select a thicker device layer.
Obviously this will affect the sensor’s performance characteristics such as resonant frequencies,
an effect that must be considered in the design.

3.3 Conclusions
In conclusion, these results show that the MEMS acoustic direction-finding sensor is made
more sensitive by replacing the traditional straight capacitive comb fingers with a branched
design. This design may also solve the problem of the fingers breaking when made too long.
By using shorter fingers attached to a long, relatively wide spine, the branched design has
greater capacitance and therefore greater sensitivity in a more robust structure. The results
presented here also show that curvature due to residual stress likely reduces the sensitivity
of the capacitive readout system by an order of magnitude. Armed with this understanding,
we can design future sensors to maximize sensitivity by reducing curvature. These findings
can be applied not only to this acoustic sensor, but to any MEMS device requiring readout
of small out-of-plane displacements. Out-of-plane capacitive comb finger banks can be made
more sensitive and durable by replacing the traditional straight comb fingers with a branched
capacitor structure.
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CHAPTER 4:

Residual stress-generated curvature reduces sensitivity

In Chapter 3 it was noted that the sensors being studied had substantial residual stress-generated
curvature so that the opposing comb fingers were not overlapped at all. The residual stress is
primarily due to the high-temperature doping step of the SOIMUMPs process [36]. It was also
noted that the electronic sensitivity η ≡ |∆C/∆z| (the slope in Fig. 3.9) is greatest when the
offset generated by the residual stress is less than the device layer thickness. Because of the
importance of this equilibrium offset in determining the sensor’s sensitivity, it was useful to
investigate it a little further. Three questions in particular raised themselves. First, can we
develop a general rule to predict the comb finger offset at various positions on a sensor of given
dimensions? Second, can we reduce the curvature, for example by including perforations in the
wings? And third, does a sensor with less curvature really have greater electrical sensitivity as
suggested at the end of Chapter 3?

4.1 Predicting curvature

In searching for a general rule to predict offset, it was hypothesized that the stress and strain
should be roughly the same in all directions in the device plane. If so, then the curvature should
be roughly constant everywhere on the sensor surface, and the surface would have a spherical
shape. If it is spherical, then a plot of the offset z at various radial distances ρ from the device
center will follow a circle of radius R centered at z = R, where R is the radius of curvature as
sketched in Fig. 4.1.

Moreover, if there is a well-defined radius of curvature R, then the doping-induced residual
stress in the device layer can be estimated using the well-known Stoney’s formula [48] which
relates curvature to stress in a thin film. If it can be established that this stress is consistent
between devices, then it should be possible to predict radius of curvature based on device di-
mensions.
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Figure 4.1: A sketch of circular curvature. If the sensor’s surface has radius of curvature R, then
a plot of the offset z(ρ) should trace an arc of a circle with the same radius.

4.1.1 Results

To estimate the curvature, it was necessary to measure the offset carefully at a series of positions
on each of several sensors. This was accomplished with the technique described in Chapter 3,
using an Olympus BX51 optical microscope with a 100× objective lens. With the comb fingers
in view, the two sides (substrate and wing) were brought into focus one at a time as shown in
Fig. 4.2, and the settings on the fine-focus knob were recorded. For this microscope and lens,
each increment in the knob setting represents one micron, and thus the difference in settings
is the offset between wing and substrate in microns. Using this technique, the offset can be
measured with a precision of half a micron.

(a) (b)
Figure 4.2: Photos illustrating the offset measurement technique. In (a) the comb on the wing
is in focus, and in (b) the fixed comb attached to the substrate is in focus. The sample was not
moved between photos. The offset is the difference in settings on the microscope fine-focus
knob.
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This technique was repeated at various positions on several sensors fabricated at different times
using the SOIMUMPs process: Generation 9 with straight and branched fingers (the sensors
discussed in Chapter 3), Gen. 6, and Gen. 7. All of these have device layer thickness of 10 µm
except for Gen. 7 which is 25 µm thick. Measurement positions were chosen to maximize the
range of radial distances ρ for each sensor; in some cases measurements were taken along the
entire length of the comb finger banks, and in other cases measurements were taken only at
certain positions as in Fig 4.3. For each measurement, ρ and the offset z were recorded. Finally,
for each sensor z was plotted as a function of ρ , and the results were fit to a circle. These plots
are shown in Figs. 4.4, 4.5, and 4.6. Some of the sensors have perforations in their wings; in the
next section, it will be shown that this does not affect the curvature.

ρ

Figure 4.3: Typical positions where offset was measured on Gen. 6 sensors. The radial distance
ρ is measured from the device center (crosshair) as indicated.

The measurements show that the 10 µm sensors (Figs. 4.4 and 4.5) all have a circular depen-
dence z(ρ). Moreover, they all have similar radii of curvature, between 63 and 78 mm. The
thicker sensor’s curvature shape (Fig. 4.6) is obviously not as well defined due to the small
number of data points; it was not worthwhile to obtain more measurements on this sensor be-
cause the offset measurements were not much larger than the measurement precision. However,
despite the small number of data points, circular curvature may now be assumed based on the
results seen in the thinner sensors. Making this assumption, the 25 µm sensor’s radius of curva-

41



ture is approximately 430 mm (Fig. 4.6). In other words, the thicker sensor is roughly six times
flatter.
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Figure 4.4: Curvature of Gen. 9 (10 µm) sensors. In each case the measured data are fit to a
circle with the radius noted. (a) Straight finger sensor. (b) Branched finger sensor.
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Figure 4.5: Curvature of Gen. 6 (10 µm) sensors. (a) Three sensors with holes in wings. (b) Sen-
sor with no holes.

4.1.2 Discussion of curvature measurements
To understand the results above, it is necessary to look at how stress leads to curvature. The
SOIMUMPs process leaves stress mainly on the surface of the device layer [36]. The doped
silicon device layer can therefore be roughly modeled as a thin film of doped silicon on top of
an undoped substrate. In reality there is a doping gradient with the amount of dopant decreasing
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away from the surface, but the thin-film model is a reasonable approximation. Based on this
model, the curvature can be analyzed the same as if it occurred due to a thin film deposited on
a substrate, a configuration that is ubiquitous in MEMS applications.
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Figure 4.6: Curvature of a Gen. 7 (25 µm) sensor. Compared to the 10 µm sensors (Fig.4.4
and 4.5), the radius of curvature is roughly six times greater.

In the following analysis the device layer thickness is designated t0, with a doped surface film
of thickness h and undoped substrate thickness t = t0− h. If the substrate Young’s modulus
and Poisson’s ratio are E and ν , then the residual stress σ due to doping is given by Stoney’s
formula [48]

σ =
Et2

6R(1−ν)h
, (4.1)

where R is the radius of curvature. In the case of single-crystal silicon, E and ν are tensor
quantities; however, the quotient E/(1−ν) can be simplified as follows. For different directions
in the (100) plane (the SOIMUMPs device plane), E varies from about 130 to 170 GPa and ν
from 0.06 to 0.28 [47, Fig. 3], but the quotient E/(1−ν) remains constant at about 181 GPa.

The doped film thickness h is reported to be 1.0 µm ±0.5 µm for both the 10 µm and 25 µm
device layer thicknesses [54]. The factor of three uncertainty in h leads to a similar uncertainty
in σ . However, it is reasonable to assume that both h and σ are roughly the same across
fabrication batches as long as the doping is conducted under the same conditions.

Even though h is not known precisely, if we can assume it is small compared to the device layer
thickness t0, then the problem is greatly simplified. Making this assumption, t ≈ t0 in Eq. 4.1
and the approximate stress σ ′ is

σ ′ ≈ E
6(1−ν)

t2
0
R

1
h
. (4.2)
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Since both h and σ are roughly fixed, the ratio t2
0/R will be a constant, providing a simple

relationship between curvature and device layer thickness.

To check the range of h where this approximation is valid, the error is defined

Error≡ σ ′−σ
σ

=
t2
0 − t2

t2 . (4.3)

Substituting t = t0−h and neglecting terms of second order in h, this simplifies to

Error =
1

t0/2h−1
, (4.4)

which is small when h� t0/2. This is the condition for Eq. (4.2) to be a good approximation.
In fact, the condition is met for both the 10 µm and 25 µm device layer thicknesses, since h is
much smaller than half the thickness in either case.

Thus it is established that h can be treated as small. Then, as long as h and σ are reasonably
consistent between batches, it is valid to assume that t2

0/R is roughly constant as well. This
simple relationship between t0 and R provides an extremely straightforward means to estimate
the curvature for a given device layer thickness.

Using the measured radius of curvature R along with the known values of t0 and E/(1−ν), it
is trivial to estimate σ for various values of film thickness h. These estimates, computed using
Eq. (4.1), are tabulated in Table 4.1. The “constant” t2

0/R is given in units of nm (µm2/mm) for
convenience. The computed stress varies over a factor of about three to four between columns
because it is roughly inversely proportional to h. However, it is reasonably consistent within
columns. This is of course because the values for t2

0/R are all roughly the same.

Table 4.1: Curvature, thickness, and stress of various sensors. The stress is computed using
Eq. (4.1) with a set of h values.

Stress (MPa)

t0 (µm) R (mm) t2
0/R (nm) h = 0.5 um h = 1 µm h = 1.5 µm

Gen. 9 10 65 1.54 84 38 22
Gen. 6 10 78 1.28 70 31 19
Gen. 7 25 430 1.45 84 40 26
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In fact, the reported uncertainty in t0 is ±1 µm [36], which combined with the rough value
of R for the 25 µm sensor is more than enough to account for the observed variation in t2

0/R.
These measurements could be made more precise by measuring the actual thickness t0 of each
sensor rather than using the reported values, and also by measuring curvature on a variety of 25
µm devices instead of just one. Nevertheless, for a rough estimate of curvature, it should be
sufficient to use

R≈ t2
0/1.4 (4.5)

where R is expressed in mm and t0 in µm as above.

4.1.3 Conclusions
The preceding analysis rests on two key assumptions: first, that h and σ remain roughly the
same from one fabrication batch to the next; and second, that h is much smaller than half the
device layer thickness, t0/2. As long as those assumptions are valid, Eq. (4.5) provides a simple
relationship between t0 and the radius of curvature. This relationship should enable reasonably
good predictions of the residual stress-generated curvature in future sensor designs.

This understanding of curvature has two immediate benefits. First, it obviously can lead to de-
sign changes to reduce comb finger offset, such as smaller wing dimensions or thicker device
layer. Second, a reliable curvature prediction could be used to optimize the size of reference ca-
pacitors, where there is no offset since both sides of the comb are fixed to the substrate. Ideally,
these should match the wing capacitors to facilitate balancing the readout circuit. Until now
reference capacitors have been designed to have the same surface area as the wing capacitors.
But because the wing capacitors are effectively reduced in size by their permanent offset, their
capacitance is reduced and the reference capacitance is therefore too high. A good prediction
of curvature could be used to adjust the reference capacitor size to match the effective size of
the wing capacitors.

4.2 Can perforations affect curvature?
It was mentioned briefly in Section 4.1 that some of the sensors whose curvature was measured
have holes patterned into their wings. If the conclusions from these measurements are to be
trusted, it must be shown that these perforations do not affect the curvature. If they do, then the
curvature of the hole-filled 25 µm device would not be a reliable data point and the analysis of
Section 4.1 would be invalid. On the other hand, if holes do affect curvature, then they could
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potentially be used to flatten the sensor wings and increase the effective capacitor size. Either
way, it is important to understand the effect of holes.

Perforations have been shown to reduce residual stress by reducing the effective Young’s mod-
ulus of the material [55]. The question is whether this effect could reduce the stress-generated
curvature in SOIMUMPs devices. It turns out the answer is no.

4.2.1 Measured curvature with and without holes

To understand the effect of these holes on curvature, measurements of curvature on sensors with
holes were compared with measurements on similar sensors without holes. The Gen. 6 sensors
whose curvature is plotted in Figs. 4.5a and 4.5b provide a case study of the effect of holes on
curvature. Among this group, the three sensors of Fig. 4.5a each have holes of different sizes,
while the single sensor of Fig. 4.5b has no holes.

The Gen. 6 sensors have holes of 2, 5, or 10 µm square, spaced at a pitch equal to twice the hole
size as sketched in Fig. 4.7. These holes are etched through the device layer after the doping
step. The 25 µm sensor of Fig. 4.6 has holes 7 µm square, spaced at a pitch of 9 µm so that
there is only 2 µm of silicon between holes. In all cases, the hole grid extends over the length
and width of each wing. These features were incorporated for various reasons not related to
curvature but provide an excellent test of the effect of holes.

Figure 4.7: A sketch of the grid of perforations in the Gen. 6 sensors of Fig.4.5a. Holes are 2, 5,
or 10 µm square and are separated by a distance equal to their size in both directions.
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Comparing Fig.4.5a to Fig. 4.5b, it is immediately clear that the radius of curvature is essentially
the same regardless of the presence of holes (79 mm vs. 78 mm). Unfortunately, there was no
unperforated 25 µm device available to compare with Fig. 4.6. However, it was straightforward
to develop a finite-element simulation to investigate the effect of holes on curvature.

4.2.2 Curvature simulations
The finite-element curvature simulation was again developed using COMSOL (for details, see
Appendix B). The model consists of a sound sensor wing with typical dimensions and a thick-
ness of 10 µm. The wing is made of single-crystal (100) silicon, oriented so that the wing axes
are along 〈110〉 directions. The top 1 µm of the wing is given an initial tensile stress of 35 MPa
in both directions in the device plane, a value in line with the doped-layer stress values com-
puted in Table 4.1 for h = 1 µm. The simulation was run once without holes in the wing, and
then again with holes. These holes are larger (50 µm) than the holes in any of the real sensors.
Larger holes simplify the model geometry and also improve visual clarity, but do not affect the
outcome; simulations with smaller holes produced the same results as those with large holes or
no holes at all.

Plots of the simulation results are shown in Figs. 4.8, 4.9, and 4.10. Displacement is indicated
by the color scale, ranging from zero (blue) up to several microns (red). The deformation is
depicted in Fig. 4.8. The total displacement at the wing corners is exactly the same with or
without holes. In Fig. 4.9, contour lines are drawn highlighting that the vertical deflection
increases from the device center outward. The curvature is uniform, with a radius of 108 µm
as shown in Fig. 4.10. This radius is somewhat greater than is observed in the real sensors,
with t2

0/R less than 1 nm as compared to about 1.4 nm in the real sensors (Table 4.1). This
discrepancy is attributable to various uncertainties. In the real sensors, the material property
E/(1− ν) and especially the doped layer thickness h may vary from the values used in the
simulation. Nevertheless, the simulation result is reasonably close to the measured results.

4.2.3 Curvature and holes: discussion and conclusions
It is clear that measurements and simulation both show that holes have no effect on the curva-
ture of these SOIMUMPs devices. This can be explained in three ways. The first is essentially
a geometric argument. Considering only the doped-layer stress component in, say, the x direc-
tion, a beam oriented along x will bend upward according to that stress component. However,
according to Eq. (4.1) the bending does not depend on the beam width but only on the stress,
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thickness of the device layer and the doped layer, and the material property E/(1− ν). Thus
if we imagine an array of such beams side by side, their curvature is each the same regardless
of the spacing between them. Finally, interjecting cross-beams between them clearly does not
affect their curvature in the x direction. A similar argument applies to the perpendicular, y, di-
rection. This collection of beams and cross-beams is essentially what is found in the hole-filled
sensor wings. Just as the spacing between beams does not affect their bending, the hole size
does not affect curvature.

(a) (b)
Figure 4.8: A plot of the COMSOL curvature simulation showing the vertical displacement
everywhere. The simulated displacement at the wing corners is exactly the same with or without
holes.

(a) (b)
Figure 4.9: A bird’s-eye view of the same simulation as in Fig. 4.8, with contour lines exactly
the same regardless of holes.

A second way to explain the non-effect of holes on curvature is by looking at how holes reduce
stress in the doped layer. The stress reduction is effectively a relative reduction in E/(1−
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ν) [55]. However, in the SOIMUMPs case, the holes go through both the doped layer and the
undoped layer beneath it, and therefore both layers have the same relative reduction in stiffness.
Since both layers are equally affected by the holes, the overall effect is no change in curvature.
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Figure 4.10: Curvature radius in the COMSOL simulation. Results were identical with or
without holes.

The third explanation is probably the simplest. Since the wing is in equilibrium, the integral
of stress through the device layer must be zero (the surface bends until equilibrium is reached).
Etching a through-hole removes equal amounts of positive and negative stress, preserving the
total curvature. The region immediately surrounding each hole will be affected, but the overall
curvature will not.

Dimples etched only through the doped layer would be expected to reduce curvature. However,
the SOIMUMPs process does not provide for partical etching of the device layer. Holes may
continue to be useful in acoustic direction-finding sensors as a way of reducing stiffness, re-
distributing mass, or allowing fluid flow in areas where it is otherwise blocked. However, they
cannot reduce the wingtip offset in a SOIMUMPs sound sensor. The only reliable way to do
this is to choose a thicker device layer or reduce the wing dimensions.

4.3 Electrical sensitivity and capacitor overlap
In Chapter 3 it was suggested that a sensor with less curvature should have greater electrical
sensitivity. This is because comb fingers that are overlapped rather than completely offset are
effectively larger capacitors. Fortunately, there was a low-curvature sensor available for com-
parison with the Gen. 9 sensors discussed in Chapter 3. This was the 25 µm Gen. 7 sensor. As
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indicated in Fig. 4.6, this sensor’s comb fingers are offset by a maximum of about 3 µm, com-
pared to the 10-27 µm offset of the Gen. 9 sensors with 10 µm device layer. In this section it
is shown that the sensor with smaller offset does in fact have greater electrical sensitivity, even
when normalized for the nominal capacitor size. Specifically, the output voltage (per comb fin-
ger, adjusted for device layer thickness) is greater, given the same wingtip vibration amplitude.

4.3.1 Measurements

The measurement process for this study was straightforward. Three sensors were chosen: the
Gen. 9 straight- and branched-finger sensors and the 25 µm Gen. 7 sensor. In each case, the
sensor was excited at its bending resonance frequency by a computer-generated, amplified sine
wave signal at roughly normal incidence. The laser vibrometer was aimed at one wingtip, and
the MS3110 capacitive readout IC was connected to read out the vibration-induced capacitance
change. The root mean square (rms) vibration amplitude ∆z was measured with the laser vi-
brometer, and the rms output voltage ∆V from the MS3110 was recorded at the same time.
These measurements were repeated for various sound pressure levels.

The results ∆V are plotted against ∆z for each sensor in Fig. 4.11. The 25 µm sensor’s output
is 77 V/µm, whereas for the 10 µm sensors it is on the order of 2 V/µm. It will be noted that the
thicker sensor exhibits vibration amplitudes and output voltages that are orders of magnitude
less than those of the thinner devices. This is primarily due to the higher resonant frequency
associated with greater stiffness and the limited range of sound pressures that are practical to
work with in the laboratory. However, the measurements show that the output is highly linear
with respect to the vibration amplitude in all cases.

In order to compare sensors with different numbers of comb fingers and different device layer
thicknesses, the measured output for each sensor was normalized as follows. First, the output
voltage was divided by the device layer thickness and by the capacitor perimeter. Next, the
results for all sensors were scaled by a common factor so that the Gen. 9 straight-fingered
sensor has unit slope. This normalization enables the sensors to be compared as though they
were the same except for curvature. The normalized output of each sensor is plotted in Fig. 4.12,
where the slope represents the normalized sensitivity. The raw and normalized sensitivities of
the three sensors are listed along with the capacitor perimeters in Table 4.2.
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Figure 4.11: Electronic output vs. mechanical amplitude, in V/µm, of sensors with high curva-
ture (Gen. 9) and low curvature (Gen. 7). The inset shows a closeup of the Gen. 7 plot.

4.3.2 Discussion: curvature and sensitivity
As seen in Table 4.2, the low-curvature sensor is five times more sensitive than the more highly
curved sensors when their respective capacitor sizes are taken into account. The reason for this
advantage was suggested in Chapter 3, where Fig. 3.9 shows the simulated capacitance per unit
length of a set of comb fingers 10 µm thick at various relative offsets z. This plot is repeated in
Fig. 4.13 along with a similar plot for a 25 µm comb finger bank. Average slopes are indicated
in the regions corresponding to the measured offsets for the Gen. 7 and Gen. 9 sensors.

The electrical sensitivity is proportional to the slope of this curve, which is obviously highest
when the offset is less than the device layer thickness. The Gen. 9 sensors, with their large
offset, are far down the curve where the slope is low. But the Gen. 7 sensor’s offset is only one
tenth of its thickness, putting it nearly on the steepest part of the curve. The thicker sensor’s
simulated sensitivity is ten times greater than that of the thinner sensors, as indicated by the
difference in slopes. Even when the sensitivity is normalized for device layer thickness (to
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account for the larger surface area of the thicker comb fingers), the low-curvature sensor is four
times more sensitive. This result agrees reasonably well with the measured result in Table 4.2
which shows a sensitivity ratio of about five.
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Figure 4.12: The same data shown in Fig. 4.11, normalized for capacitor perimeter and device
layer thickness. For each sensor, the normalized sensitivity is the slope of the line fit to the data.

It is interesting to note that zero offset is not desirable, as both curves in Fig. 4.13 flatten near
z = 0 due to fringe field effects, discussed in Appendix F. The maximum sensitivity occurs
when the offset is anywhere between about 2 µm and the device layer thickness.

In summary, measurements and finite-element simulations indicate that the sensor with signif-
icantly overlapped comb fingers is four to five times more sensitive than the sensors with non-
overlapped comb fingers. This result is normalized for the capacitor size in each case. Clearly,
the greatest electrical sensitivity is obtained by designing a sensor so that the curvature-induced
capacitor offset is less than the device layer thickness.
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Figure 4.13: Simulated capacitance per unit length c as a function of offset z for the two different
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Table 4.2: Normalized sensitivity. The low-curvature sensor is five times more sensitive than
the highly curved sensors.

Raw sensitivity Capacitor perimeter Normalized sensitivity
(V/µm) (mm)

Gen. 9 Straight 1.8 104 1
Gen. 9 Branched 2.6 163 0.9
Gen. 7 (25 µm) 77 352 5.2

4.4 Conclusions
In the acoustic direction-finding sensors, the residual-stress curvature is constant within the
plane of each device, resulting in a well-defined radius of curvature. A simple rule of thumb
predicts this radius given the device layer thickness. Also, holes or perforations have no effect
on curvature in these SOIMUMPs devices. Finally, it is confirmed that, as suggested in Chap-
ter 3, a sensor whose comb fingers are partly overlapped has much greater electrical sensitivity
than one whose fingers are non-overlapped due to curvature.
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CHAPTER 5:

Conclusion

This body of research represents tangible progress toward a working MEMS acoustic direction-
finding sensor based on the Ormia ochracea fly’s ear. Through analytical models, computer
simulations, and laboratory experimentation, several key advances have been made.

In Chapter 2 linear elastic stiffness models were presented and then validated by using a nanoin-
denter to measure the sensor’s stiffness directly. The nanoindenter measurements verified two
key assumptions about the sensor’s function. First, the stiffness is linear in nature; i.e. Hooke’s
law applies to the MEMS structures under normal loading. Second, the resonant frequencies
can be predicted using the analytical models presented. Specifically, the nanoindenter results
enabled matching of the device structures to their corresponding resonant frequencies; this re-
sult validates a simple way to estimate resonant frequencies of future designs. Additionally, the
nanoindenter was used to show that the sensor can be exposed to quite high sound pressures
with no loss of function. The techniques presented can be applied to other MEMS sensors to
verify linear stiffness, relate vibrational modes to specific structures, and conduct failure testing.

Chapter 3 presented an improved capacitive readout system using branched comb fingers in
place of the traditional straight fingers. Again, the results are supported by analytical and nu-
merical models. This system makes for more durable capacitor structures and increases electri-
cal sensitivity to motion. These results can be applied to other MEMS sensors requiring readout
of small out-of-plane displacements. Also in Chapter 3, it was discovered that the residual
stress-induced curvature in the sensors greatly reduces the readout system’s capacitance and
therefore its sensitivity.

The nature and effect of this curvature was investigated in more detail in Chapter 4. A simple
model of curvature was presented, and then verified by measurements. This model offers an ex-
tremely straightforward means of predicting curvature in SOIMUMPs structures. Perforations
were also investigated, and found to have no effect on curvature. Finally, the role of curvature
in electrical sensitivity was explored. It was found that a sensor with low curvature is indeed
much more sensitive than one with high curvature.
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The primary goal of this project is to replicate Ormia ochracea’s directional response to sound
in a sensor with integrated capacitive readout. This has yet to be achieved. In order to design
sensors that are more likely to exhibit the physics seen in the fly’s ears, it will be necessary to
use the results presented here. For example, accurate resonant frequency estimates based on
sensor dimensions allow the sensor to be designed so that the bending and rocking frequencies
are optimally separated to maximize the directional dependence. Also, reduced curvature and
branched capacitors will boost the signal output of future sensors by an order of magnitude,
raising the chance of detecting any directionally-dependent response. In short, the results pre-
sented here provide several essential tools for the continued development of the MEMS acoustic
DF sensor.
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APPENDIX A:

Sensor dimensions

This appendix provides the dimensions of the 10 µm Generation 9 sensors (SOIMUMPs run
#37), which are the straight-finger and branched-finger sensors studied in Ch. 3 and some of the
curvature subjects of Ch. 4. Also included are dimensions of the Gen. 7 sensor studied in Ch. 4.
Dimensions of Gen. 6 (Ch. 4) and Gen. 8 (the sensor in the nanoindenter study of Ch. 2) are
given in M. Touse’s dissertation [29, App. A].

Fig. A.1 shows the layout of the Gen. 9 chip. This is the proof image provided by MEMSCAP
Inc. as part of the fabrication process. Sensor 1, at top left, has the branched comb fingers, and
Sensor 2, top right, has the straight fingers. Sensors 3 and 4 are identical to Sensors 2 and 1
respectively. Note that Sensors 1 and 4 have features extending into the shaded area at the top
left and bottom right of the diagram. This is the boundary of the “useable area” defined in the
SOIMUMPs manual [36, Sec. 2.7.1]. The features outside this area were not patterned onto
the device. Because of this design error, these sensors have only one wing each that is able to
produce electronic output. In the malformed wings, the “device” side of the capacitor bank is
electrically shorted to the rest of the chip and therefore does not function as a capacitor.

The outer dimensions of the Gen. 9 sensors (wing size plus comb finger length) are all the same:
wings are 2000 µm wide including fingers and 1350 µm long. All capacitor gaps are 2 µm.
Detailed dimensions are given in Table A.1 along with the Gen. 7 dimensions. Dimensions and
numbers of the comb fingers are given in Table A.2.

Table A.1: Dimensions of the Gen. 7 and 9 sensors, in µm.

Sensor Wing Bridge Leg Finger

9-1 & 9-4 1800 × 1150 300 × 500 40 × 100 Branched
9-2 & 9-3 1900 × 1250 300 × 500 40 × 100 2×100

7-2 700 × 1150 550 × 700 100 × 100 2×100
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Figure A.1: Layout of the Gen. 9 sensor chip.

Table A.2: Parameters of the branched comb fingers, dimensions in µm.

Spine 6 × 200
Rib 2 × 20
Ribs per spine 25 pair
Spines on wing end 31.5
Spines on wing side 17.5 per side
Total spines per wing 66.5
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APPENDIX B:

COMSOL Multiphysics models

In MEMS research, it is often helpful to use numerical models. Throughout this research,
COMSOL Multiphysics simulation software (COMSOL, Inc.) was used extensively to eval-
uate proposed designs for new devices and to simulate various aspects of device performance
including solid mechanics, electricity, and acoustic response. This appendix presents some gen-
eral techniques to get the most out of COMSOL with the least time, and describes the specific
models used in this work.

B.1 Recommended COMSOL techniques
In this section several COMSOL modeling techniques are presented. These techniques range
from general programming principles to more specific tricks applicable to COMSOL in partic-
ular.

B.1.1 Start simple
First, start simple. Although it is tempting to begin by building the entire geometry of the fin-
ished product, this approach is rarely a good idea. As with any computer programming task, it is
recommended to begin with a model that is much simpler than the one that is eventually desired,
and whose accuracy can be verified by comparing with known analytical models. For example,
if the desired model is a complicated structure on a cantilever beam, the initial model might be
a simple cantilever beam. This approach serves two purposes. First, it makes troubleshooting
much easier. By adding one layer of complexity at a time, it is obvious when an addition to
the program causes a problem. By contrast, beginning with a complex program makes it much
harder to identify any mistakes.

The second advantage of the start-simple approach is the ability to check the simulation’s output
after each addition. When the initial model performs as expected, it is relatively easy to add fea-
tures one at a time, recomputing the simulation after each step to make sure it returns a sensible
solution. Continuing with the example of the cantilever beam model, the first simulation might
be an eigenfrequency study whose results could be compared to the textbook formula for the
resonant frequency of a cantilever beam. This approach of iterative additions provides greater
confidence in the final model’s results.
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B.1.2 Meshing
One particular challenge in MEMS simulations is meshing the model. This is made difficult
by the extreme aspect ratios that are often involved in the device geometry. Device structures
may be hundreds or even thousands of microns across but only a few microns thick, with some
features even smaller. These extreme ranges of size can make it very difficult to build a model
mesh that works. Often it is challenging just to get the mesh to build without errors. It can
be even more challenging to create a mesh with few enough elements to be solvable with the
computing power available. However, there are a couple of techniques that may be helpful.

First, avoid meshing parts of the model where no interesting physics is happening, for example
the substrate wafer. If possible, build the model geometry so that these areas are not included
in the simulation at all. For example, in an acoustic model, any domain with a “hard” boundary
is probably safe to remove from the simulation.

For models with air included, it may be helpful to create separate domains where there is air
between small device features. It may seem natural to build only the solid material into the
model geometry, leaving the air space around the device as one big domain. However, the
software may have a much easier time meshing the model if each small air space is a separate
domain. This technique makes it somewhat more complicated to build the model geometry,
but the extra time spent on the geometry will pay off if the software is able to create a suitable
physics-defined mesh without user intervention.

Often, mesh elements tend to be concentrated in corners even when the physics of the model
does not require such concentration. In that case, it may be possible to reduce the number of
elements by meshing the corner edges first using an Edge mesh of the desired size.

If it does become necessary to build a user-defined mesh, some general guidelines apply. First,
it is best to work from the inside out, in the sense that the smallest features should be meshed
first. For large, flat structures such as those often appearing in MEMS devices, it may be
helpful to use a two-dimensional mesh such as Free Triangular on one of the surfaces and
then “sweep” it through the structure. If a Swept mesh is used, it must be remembered that the
edges of the structure will be covered with rectangular elements. These must be divided into
triangles using Convert before they can be joined with a tetrahedral mesh. Also, if a swept
mesh is used, it is advisable to assign it a Distribution of at least 3 elements, and make it fine
enough so that the height of the elements is not much less than their width and length.
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B.1.3 Anisotropic material

In addition to meshing, it can be challenging to incorporate the anisotropy of single-crystal
silicon. Single-crystal silicon is available in the materials database, but if the model to be
simulated is not oriented along 〈100〉 directions, then the elasticity matrix needs to be rotated
accordingly. In particular, a standard wafer as used in SOIMUMPs [36] is oriented along 〈110〉
directions. For such a wafer, the orthotropic elasticity constants and the elasticity matrix are
given in the excellent paper by Hopcroft et al. [47, Eq. (8)]. Once these values have been
entered, it may be useful to save the material to the list of user-defined materials for future use.

B.1.4 Tiny features

If comb finger capacitors or other tiny features are incorporated into the MEMS device, it may
not be practical to include them in the simulation model due to their large numbers and small
size. Depending on the physics to be explored with the model, the means of simulating comb
fingers can vary. For simulations involving air, they may be simulated by a drag force applied to
the location of the comb finger bank. For example, in the case of harmonic motion a frequency-
dependent drag force proportional to velocity may be applied. This can be done using the
automatically generated velocity variable, by multiplying the velocity at each point in the comb
fingers by the appropriate drag coefficient [7,56,57] and then applying the resulting force to the
surface. For simulations involving solid mechanics, such as computing resonant frequencies,
comb fingers may be simulated by a reduced-density material. For example, if each comb finger
is 2 µm wide and the gaps between them are also 2 µm wide, then the density of the moving side
of the comb bank is one fourth that of the device material.

B.1.5 Computing capacitance

For electrostatic models, there is an easy way to compute the capacitance of a model. Where a
voltage is to be applied, define a Terminal boundary condition instead of Electric Potential.
When the simulation is complete, the Terminal creates a global variable es.C11 that can be
accessed from Derived Values as a Global Evaluation. There is then no need to compute
capacitance by integrating energy density or surface charge.
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B.1.6 Infinite element domains
Often in electrostatic simulations it is desirable to have a boundary condition such that the
potential goes to zero at infinity. This can be accomplished very neatly using the Infinite

Elements feature, which creates a series of domains around the model that the simulation will
treat as exponentially increasing in size. At the risk of getting too version-specific, here is a
guide to using infinite elements as of COMSOL 4.3:

1. Enclose the model geometry with a sphere, cylinder or box (circle or rectangle in 2D) as
the bounding domain.

2. Add domains where the infinite elements will go. The easiest way to do this is using
layers. With the bounding domain highlighted in the Model Builder, open the Layers tab
and enter a thickness for Layer 1. Use the check-boxes to select where layers should be
added, then build the geometry.

3. Right-click Model->Definitions and select Infinite Element Domain. This creates
a new set of domains inside the layer created in the previous step. While Infinite

Element Domain is highlighted in the Model Builder, select the appropriate coordinate
system for the geometry of the bounding box. Finally, enter the coordinates of the center
of the bounding box under Center Coordinate. If the coordinate system and center
coordinate are not chosen correctly, the infinite elements will not work.

4. Mesh the model excluding the infinite element domains as desired, but in the infinite
element domains, use a Mapped mesh. Along the edges connecting the inner and outer
boundaries of the infinite element domains, add a Distribution of 5 or more elements.

5. To avoid showing the infinite element domains in the results plot, attach a Selection to
the Solution. In this selection, choose only the domains that should appear in the results
plot.

Similar techniques apply to the use of the Perfectly Matched Layer feature, which is appli-
cable to frequency-domain models.

B.1.7 Symmetry in acoustic models
In many cases, it may be possible to exploit symmetry to simplify a model and reduce the
number of mesh elements. However, it is not obvious how to tell COMSOL to treat a model as
one half of the whole model. In the case of an Acoustic-Structural Interaction model, there are
three essential steps and one important caveat. The three steps are:
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1. Apply a Sound Hard Boundary condition on the air boundary at the symmetry plane.
2. On the other air boundaries of the model, apply a Cylindrical Wave Radiation con-

dition, or similar condition appropriate to the boundary geometry. Make sure the Sound

Hard Boundary condition at the symmetry plane is not overridden.
3. Apply a Symmetry condition on the solid material boundaries at the symmetry plane.

The important caveat is that the Symmetry condition precludes the simulation of antisymmetric
modes. To find these modes, the model must be modified and re-run with an Antisymmetry

condition at the symmetry plane in the solid material.

It is advisable to build a full model for comparison, to make sure the symmetry is properly
accounted for in the partial model. However, once that is ascertained, the partial model may be
more efficient than the full model.

B.2 Models used in this project
A COMSOL solid mechanics model was used to estimate the flexing mode deflection depicted
in Fig. 2.4, to estimate the elastic stiffness k(x) as shown in Fig. 2.8, and also to estimate the
rocking and bending eigenfrequencies in Table 2.3. Electrostatic models were used to simulate
the capacitance c(z) as shown in Fig. 3.9 and 4.13. The graphics in Fig. 4.8 and 4.9 were
produced using a second solid mechanics model to simulate the curvature due to surface stress.
The same model generated the simulated z(ρ) values in Fig. 4.10. In this section these models
are described in more detail.

B.2.1 Linear Elastic Stiffness
The stiffness simulation whose results are shown in Fig. 2.4 and 2.8 and Table 2.3 was a 3D
Solid Mechanics model. Various values were defined as Parameters, including sensor di-
mensions, nanoindenter tip position along the x and y axes, the load applied by the nanoindenter,
and several different mesh size parameters to facilitate adjusting the mesh fineness.

The model geometry was built in a single Work Plane and extruded through the device layer
thickness. The sensor legs, wings, bridge, and comb fingers were represented as rectangles
and the nanoindenter tip was represented as a circle. Even though this circle was much larger
than the actual tip, it was still quite small compared to the other model features. To facilitate
meshing, a larger concentric circle was added around the tip. The sensor wings were divided
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into a central section, along the x axis, and two outer sections. This division enabled the mesh
to be finer along the axis, where the load was to be applied, and coarser elsewhere. COMSOL’s
Mirror feature was used to simplify the geometry description by exploiting the symmetry of
the model. The geometry is shown in Fig. B.1.

Figure B.1: The linear elastic stiffness model. The inset shows the extruded concentric circles
representing the nanoindenter tip.

The main model material was 〈110〉 silicon, but the comb fingers were modeled using the same
material with one quarter the density as explained in Ch. 2. The material was modified from
the single-crystal silicon material in the COMSOL Material Library by editing the anisotropic
properties using Orthotropic values given by [47, Eq. 8]. For the lower density material,
the density was edited in the Linear Elastic Model condition applied to the comb finger
domains.

The boundary conditions were a Fixed Constraint on the substrate domain and a Boundary
Load at the nanoindenter tip boundary. The load was applied only to the inner of the two circles.
The outer circle was used only to help the software with meshing.
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To mesh this model efficiently, several steps were used. First, a Free Triangular mesh was
applied to the top boundaries of the tip, the outer circle around the tip, and the legs. A Size

was applied to this mesh which defines a maximum element size given by one of the model
parameters. This was the finest mesh used. Next, a second Free Triangularmesh was applied
to the top boundary of the bridge. This mesh was also given a Size with a higher maximum
element size, also parameterized. A third Free Triangular mesh was applied to the wing
center sections and given a Size of Extremely Fine, which was coarser than the first two
meshes. To complete the mesh of the top surface, the substrate and outer wing sections were
meshed with a fourth Free Triangular mesh of Normal size. Thus, the parts of the model
where most of the physics occurs were given the finest mesh. Finally, the mesh was Swept

through the model thickness and given a Distribution of three elements.

To find the optimum mesh size parameters, an Eigenfrequency study was repeated for various
mesh sizes. As the mesh was made finer and finer, the eigenfrequencies returned by the simula-
tion converged to particular values. The optimum mesh size was then chosen to be the coarsest
mesh that returned eigenfrequencies within a tenth of one percent of the converged value. For
this model, the final maximum element sizes for the finest meshes were 8 µm and 12 µm re-
spectively. This eigenfrequency study was used to produce the simulated rocking and bending
frequencies reported in Table 2.3.

The primary purpose of this model, however, was to estimate the sensor’s linear stiffness k(x).
To accomplish this, a Stationary study was added, with a Parametric Sweep of nanoinden-
ter tip positions. When this study was computed, the stiffness values were extracted by means of
a Surface Average (found under Derived Values). The Data Set was the parametric solu-
tion, the Parameter Selection was All, and the boundary Selection was the nanoindenter
tip boundary. The Expression was defined as the nanoindenter load parameter divided by the
generated variable solid.disp, where the load corresponds to F in Ch. 2 and the simulated
displacement solid.disp corresponded to d(x). When evaluted, this expression produces a
table of k(x) vs. x, the values plotted alongside analytical models and measurements in Fig. 2.8.

The same model was used to evaluate the so-called flexing models as shown in Fig. 2.4. In
that case the nanoindenter tip was kept at x = 0 and a Parametric Sweep was run on the y tip
position. The simulation returned the displacement d(y), which was plotted as the deflection in
Fig. 2.4.
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B.2.2 Capacitance vs. offset
In Ch. 3 and 4 a COMSOL model was used to estimate the capacitance per unit length c as a
function of offset z, in Fig. 3.9 and 4.13. This was a 2D Electrostatics model.

In this model, the offset was a Parameter, as was the number of comb finger pairs N to be
simulated. The geometry was very simple. A rectangle represented one of the fixed comb
fingers, and an Array was generated to make N copies spaced the appropriate distance apart.
The rectangle corners were rounded using Fillet to simulate the real comb fingers, whose
corners are somewhat rounded due to the fabrication process. A Copy of the fixed array was
made to represent the moving comb fingers. A larger rectangle was then created to bound the
model, and a Difference was applied to subtract the comb fingers from the bounding box.
This had the effect of removing the interiors of the comb fingers from the model entirely, so that
they were not meshed. This was acceptable since they were to be treated as perfect electrical
conductors. Finally, an Infinite Element Domain was used to simulate the bounding box
extending to infinity. This geometry is partly shown in the cropped images of Fig. 3.8.

For this model, materials were not important as long as the material between the comb fingers
was given relative permittivity εr = 1. It was adequate to define an artificial material with only
that property.

In the Electrostatics simulation, a Ground condition was applied to the fixed comb fingers
and a Terminal of constant non-zero voltage to the moving fingers. An Electric Potential

could have been used instead, but would not have provided the built-in capacitance computation
provided by the Terminal condition.

The mesh in this model was a Free Triangular applied to all domains except the infinite ele-
ments at the edges of the model. In those elements a Mappedmesh was used with a Distribution
along selected edges between the inner and outer boundaries of the infinite element domain.

To find the optimum number of comb finger pairs to simulate, a Parametric Sweep was run
with N ranging from small to large values (the size of the bounding box was parameterized
based on N as well). Values of N larger than 25 produced essentially the same capacitance, so
N = 25 was used for the final model.

To compute the capacitance per unit length, a Stationary study was run, with a Parametric

Sweep of offset ranging from zero to 30 µm. The capacitance was retrieved by creating a Global
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Evaluation as follows. The Data Set was the parametric solution, and the Parameter

Selection was All. The Expression to be evaluated was es.C11, which was the capaci-
tance of the entire model returned by the Terminal condition. Howver, since this included all
the capacitor gaps, it was divided by the number of gaps (2N− 1). When evaluated, this ex-
pression produced the capacitance per unit length as a function of offset, or c(z) as in Fig. 3.9
and 4.13.

B.2.3 Perforations and curvature
The simulations of curvature in sensors with and without perforations in Ch. 4 were made using
another 3D Solid Mechanics COMSOL model (see Fig. 4.8, 4.9, and 4.10).

In this model the wing and bridge dimensions were parameterized, as were the doped layer
thickness h and a value for stress. For the geometry, a Block was created for the undoped layer
of the wing and similarly for the bridge. Another block was inserted to represent one of the
perforations, and an Array was made from that. A Difference was then applied, in which
the perforations were subtracted from the wing and bridge. This process was repeated for the
doped layer.

The material used in this model was 〈110〉 silicon with the rotated stress tensor applied using
the Anisotropic setting in the Linear Elastic Material model. The residual stress was
simulated by applying an Initial Stress and Strain to the doped layer. The stress matrix
consists of the (negative-valued) stress parameter in the x and y diagonal elements and all other
elements zero. Finally, a Fixed Constraint was applied to the end of the bridge.

The mesh in this model was a Free Triangular mesh on the top surface, Swept through the
doped layer and then Swept again through the undoped layer. The swept mesh in the undoped
layer was given a Distribution of three elements. Finally, the deformation was computed by
running a Stationary study. To compare the deformation with and without perforations, the
model was rerun with the perforation geometry elements disabled.

The plots of Fig. 4.8 were generated by creating a 3D Plot Group with a Surface plot of
the generated displacement variable solid.disp. The contour lines shown in Fig. 4.9 were
added by adding a Contour to the 3D Plot Group. Finally, the offset z as a function of radial
displacement ρ was found by creating a Cut Line 3D along the model centerline, then adding
a 1D Plot Group with a Line Graph of the expression solid.disp. The data from this line
graph were exported as a table using the Export feature. These data were used to plot Fig. 4.10.
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APPENDIX C:

Wire bonding

In order to perform any experiments involving the electronic readout from the MEMS device,
it was necessary to make electrical connections between the device and the chip carrier it was
mounted on. These connections were made using the Kulicke & Soffa 4524D wire bonder,
shown in Figure C.1. Researchers who need to use the wire bonder should expect that it will
take several hours of practice to become proficient. While that learning period is unavoidable,
the guidelines presented here may hasten proficiency and improve early outcomes.

Figure C.1: The Kulicke & Soffa 4524D wire bonder.

The operating manual for the wire bonder is fairly complete and easy to read. This guide does
not replace the manual, but describes where to find the necessary instructions and provides some
additional information that may be helpful.
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The wire bonder can be operated in semiautomatic mode or in “Manual Z” mode. Between the
two, the manual mode is recommended, as it produces more reliable bonds and is easier to use.
This guide assumes the use of the manual mode.

The basic steps involved in wire bonding are:

1. Place the chip carrier onto the workholder.
2. Turn on the wire bonder.
3. Set the bonding parameters.
4. When the workholder reaches working temperature, create bonds.
5. Turn off the wire bonder.
6. Remove the chip carrier when it is cool enough to handle.

The remainder of this guide focuses on setting the bonding parameters and creating the bonds,
but first some of the wire bonder parts are described.

C.1 Wire bonder parts
The wire bonder is described in detail in the operator’s manual. Three key parts necessary for
basic operation are shown in Figures C.2 and C.3. First is the capillary, indicated by the arrow
in Figure C.2. The capillary is the white pointed tube that guides the end of the wire. Second
is the the Negative Electronic Flame Off (N.E.F.O.) solenoid. The N.E.F.O. solenoid is used
to create a new ball on the wire end when necessary (see Section C.3). Last is the capillary
unplugger, shown in Figure C.3. The unplugger is used to clean out the capillary when it gets
clogged with bits of wire.

C.2 Bonding parameters
Before using the wire bonder, the bond parameters must be set. This is done using the liquid-
crystal display and keypad, and may be done while the work surface is warming up. Bond
parameters for 25 µm gold wire are found in the wire bonder manual on p. 6-32, and are not
repeated here.

When the wire bonder is turned on, the work surface begins to heat up. The recommended
temperature setting is 120 ◦C. While the surface is heating, the bond parameters may be set
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using the display. The first screen on the display prompts the user to enable or disable the
password. Highlight DISABLE by using the arrow keys, then press the ENTER key.

The next screen contains the settings for the first of the two bonds, as indicated by the high-
lighted numeral “1” at the top of the display. See p. 4-13 of the manual for the description
of the screens and how to set the parameters. The SEARCH setting controls the height of the
wire in semi-automatic mode and may be ignored if using manual mode as recommended. The
remaining parameters for the first bond should already be set to the recommending settings. If
necessary, they may be adjusted using the arrow keys to select a parameter and the plus/minus
keys to adjust the parameter setting. To continue to the next screen, use the down arrow key.

Figure C.2: A closeup view of the wire bonder, showing the locations of the capillary (arrow)
and the N.E.F.O. solenoid (oval).

The second screen contains the settings for the second bond, as indicated by the highlighted
numeral “2” at the top of the screen. As with the previous screen, if using the manual mode,
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SEARCH may be ignored. Parameters POWER, TIME, FORCE, and BALL are adjusted using
the arrow keys. Parameters LOOP and TAIL each have dedicated plus/minus keys.

Figure C.3: The capillary unplugger and its container.

It is important to navigate back to the screen for the first bond before starting to bond. If bonding
is started while the second screen is displayed, the wire bonder will use the wrong settings and
will not bond properly.

C.3 Normal operation techniques
Operation of the wire bonder is explained in the operating manual. In particular, Section 6.3.1
on p. 6-23 covers creation of a ball on the wire end, and Section 6.3.2 covers “Manual Z”
bonding starting at the bottom of p. 6-25. Rather than reproducing those instructions, this
section covers recommended techniques and common problems. Again, the manual bonding
technique is recommended and is assumed to be used throughout this guide.

Wire bonding technique is a skill that must be developed through practice. However, there are
some tips that may help the novice. First and foremost is to plan carefully before starting. It
is much easier to make short bonds than long ones. Before beginning a wire bonding job, the
bonds should be mapped out to minimize the length of each and to ensure that they will not
overlap. If possible, devices should be designed with this in mind, so that bonding pads are
close to the edges and positioned so that bonds do not need to overlap each other.

When it is time to begin bonding, the most important technique recommendation concerns the
method of positioning the work surface under the fixed capillary. Although the work surface
can be moved by moving the mouse, this is not the easiest way to control the position of the
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work surface. Instead, it is recommended to hold the mouse fixed with the right hand and use
the left hand to directly slide the workholder into position. Compared to moving the mouse,
this technique provides better control of fine movements.

The second matter of technique involves creating bonds with a good arc, which is important in
order to prevent a bond from contacting the wrong surfaces, including other wire bonds. This
is much easier with short bonds than long ones. Getting the desired arc is somewhat of an
art form, but is worth learning. The arc height may be controlled by adjusting the length of
wire pulled out between the first and second bonds. Once the wire is the desired length, the
capillary is slowly lowered toward the surface where the second bond is to be made. As the
capillary approaches the surface, the wire must be kept slack enough so that the portion of wire
extending out of the capillary is not stretched tight to the side. With proper slack, when this
portion of wire touches the surface, it bends upward, creating the desired arc just before the
second bond is made. If the wire is stretched too tight to the side, it will not make a good arc.
On the other hand, if the wire is too loose, it may sag. Again, the best way to make good bonds
is to keep them as short as possible.

Finally, on some surfaces with poor adhesion properties it may help to place a ball on the surface
before attempting to make a bond. This ball then becomes the new surface to be bonded to. To
make the ball on the surface, a bond is created at the desired position and then the second bond
is placed directly on top of the first one.

C.4 When something goes wrong
Manual bonding is actuated using the black thumb button on the mouse. If the wire bonder
does not respond to pushing this button, the most likely cause is that the wire end does not have
a proper ball. This will be indicated by the OPEN light being lit. The solution is to create a
new ball using the procedure described in the manual on p. 6-23. Getting the wire through the
capillary is an exercise in patience. The wire loading tips on p. 5-12 of the manual may be
helpful.

If the capillary does not reach the surface to be bonded, or if the capillary does not rise from the
surface after the first bond is made, the workholder height needs to be adjusted. This adjustment
is described in the manual on p. 5-10.
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C.5 Conclusion
The wire bonder may be intimidating at first, but with practice it is actually fairly easy to use.
Also, the operating manual is fairly comprehensive and easy to follow. This guide is intended
to supplement the manual by pointing out particularly helpful sections of the manual and by
recommending a few techniques not covered in the manual.
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APPENDIX D:

MS3110 capacitive readout integrated circuit

Electronic readout of the MEMS device’s response to sound has been achieved using the Micro
Sensors, Inc. MS3110 Capacitive Readout Integrated Circuit (IC). This IC (pictured in Fig-
ure D.1) consists of a 16-pin chip in a dual inline package, and a separate evaluation board
(pictured in Figure D.2) that the package may be mounted on to facilitate experimentation. The
specifications and instructions for operation are contained in the MS3110 documentation and
will not be repeated here. However, there are some lessons learned that are specific to operation
of the MS3110 with the MEMS acoustic direction finding sensor. These include some tips on
balancing the capacitance bridge circuit and some conflicts with the laser vibrometer software.

Figure D.1: The MS3110 as used in the evaluation board.

Balancing the trim capacitors is not always straightforward, especially if the reference capaci-
tors are not well matched to the device comb fingers. If there is a large mismatch, the MS3110
trim capacitors may not have enough range to balance the circuit. However, there is a solution.
When using the evaluation board, it should be possible to balance the circuit by inserting an
external capacitor between the CSCOM and either CS1 or CS2 as shown in Figure D.2. By
choosing a different size capacitor, e.g. 10 pF or 18 pF, and trying the CS1 or CS2 sides in turn,
it should be possible to balance the circuit. Once the circuit is balanced using this technique, it
should balance from then on using the same external capacitor configuration.
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Figure D.2: The MS3110 evaluation board, with an external capacitor connected between the
CSCOM and CS1 pins (red and white wires).

A second challenge in using the MS3110 arises when the evaluation board is connected to
a computer also running the VibSoft 4.7 vibrometer software. For unknown reasons, certain
actions in the vibrometer software can cause the MS3110 to behave erratically. When using both
applications simultaneously, it is advisable to check the MS3110 output signal after conducting
operations in the VibSoft application. If the MS3110 had been operating normally, but is no
longer producing the expected output, rewriting the control registers should correct the situation.
Alternatively, if the desired control parameters have been programmed into the MS3110’s read-
only memory, then a chip reset should also correct the situation.

In conclusion, the primary source of information on the MS3110 is the operation manual. This
guide may be of some additional help in using the MS3110 with the acoustic direction-finding
sensor.
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APPENDIX E:

Light and the sound sensor

In the course of this research, it was discovered that intense light may affect the capacitive
readout system of the acoustic DF sensor. In particular, if the laser vibrometer was aimed at the
comb finger bank being used for readout, then interrupting the light had a dramatic effect on the
circuit balance. For devices with two wings, aiming the laser at the wing opposite to the comb
finger bank in use has a smaller but still observable effect on the readout circuit.

It is likely that this effect of laser light is due to the doped silicon of the device acting as a
photodiode. Intense light increases the conductivity and thus the capacitance of the illuminated
comb finger bank. Since the reference bank is not illuminated by the narrow laser beam, its
capacitance remains steady and the capacitance bridge becomes unbalanced.

In contrast to laser light, ambient light does not have a significant effect on the capacitive readout
circuit. This was confirmed by turning off the laboratory room lighting and observing no change
in circuit balance. One likely reason is that the ambient light is less intense than laser light. A
second reason is that ambient light tends to illuminate both the device capacitor bank and the
reference bank equally. Thus any light-induced capacitance change in one bank is matched with
an equal change in the other bank, and the circuit balance is not affected.
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APPENDIX F:

Analytical treatment of fringe �elds

This appendix presents an analytical method to include the fringe fields (edge effects) in an
estimate of the capacitance of offset plates, as in the capacitive readout of the fly-ear sensor.
The analysis is due to A. E. H. Love [58], but it is supplemented with MATLAB scripts to carry
out Love’s calculations and COMSOL simulations to verify the accuracy of the results.

When designing or characterizing a capacitive comb finger readout system, it may be useful to
include the fringe field effects in an analytical model of capacitance. Usually a finite-element
model (FEM) will provide the most accurate estimate, as seen in Ch. 3, but in some cases an
analytical approach is desired. For a fully aligned parallel-plate capacitor, the fringe field can be
estimated by several means as described in a technical report by Leus and Elata [59]. This report
compares various approximate computations of the capacitance of parallel plates. However, in
the case of the acoustic DF sensor, the plates are generally not completely aligned (overlapped).
In this case a different approach is required.

Approximations for the capacitance of offset plates can be found in a paper published in 1924
by A. E. H. Love [58]. This paper uses conformal mapping to estimate the capacitance between
two upright plates of height 2b, separated by a horizontal gap 2h and offset or displaced by a
vertical distance d. Derivations for various relative magnitudes of d, 2b, and h are found in
[58, Sec. 7-9]. The derivations are complicated, but the results can be used without following
every detail and may be verified using FEM. It is particularly helpful that some computed ex-
amples are provided to assist the reader. In these sections formulas are given to approximate
the capacitance per unit length for three regimes of plate dimensions and displacement, all of
which may relevant to the capacitive readout system. These regimes are:

• (Sec. 7) The displacement or offset is of the same order as the capacitor gap.
• (Sec. 8) The displacement is large compared to the gap, but the overlapped length of the

plates is still substantially larger than the gap.
• (Sec. 9) Both displacement and overlap may be of the same order as the gap.
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In each case, the capacitance per unit length is given as K′/(4πK) in Gaussian units, where K′

and K depend on the plate configuration and dimensions. In SI units this result is multiplied by
4πε0 to obtain

c = ε0K′/K. (F.1)

In the following sections are presented MATLAB functions to compute the capacitance accord-
ing to the three regimes described above. In each case, the MATLAB function produces results
identical to those in [58]. Also, in each case a COMSOL FEM is used to verify the results.
Unlike in the theory, in the COMSOL model the capacitor plates are given a non-zero thickness
which results in slightly greater capacitance.

F.1 Small displacement
In the first case, for small displacement, the capacitance is given by the equation at the top
of [58, p. 348]:

K′

K
=

b
h

{
1+

h
πb

(
2− coshγ + log

2πb
h

)}
, (F.2)

where log represents the natural logarithm and γ is found by solving the transcendental equation

γ + sinhγ =
πd
2h

. (F.3)

Note that the term in curly braces is a correction factor that is multiplied by the elementary
capacitance per unit length c = ε0b/h to get the approximate capacitance including fringe field
effects. The following MATLAB function performs these computations, taking as inputs the
dimensions b, h, and d.

function capacitance = smalloffset(b,h,d)

gamma=zeros(1,length(d));

for i=1:length(d)

f=@(g) g+sinh(g)-pi.*d(i)/(2*h); % finding zeros of f solves for gamma

gamma(i)=fzero(f,1); % find zeros of f

end

capacitance = ... % in picofarads

8.854188*(b/h)*( 1+( h/pi/b ).*( 2-cosh(gamma)+log( 2*pi*b/h ) ) );
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The output of this function is the total capacitance of the plates including fringe field effects.
We can check this function by comparing to the example given in Love’s paper. He mentions
that “if b/h = 100, the change in K′/K as d increases from 0 to h is a decrease from 102.37
to 102.27.” The MATLAB function produces the same results. Also, a COMSOL simulation
with 2b = 200µm (and therefore 2h = 2µm), and plate thickness of 0.1 µm, produces similar
results: as d increases from 0 to h, the capacitance decreases from 1.0244ε0 to 1.0235ε0. As
mentioned earlier, the higher capacitance in the COMSOL simulation can be attributed to the
non-zero plate thickness.

F.2 Large displacement, large overlap
The second regime is where the displacement is large compared to the capacitor gap but the
remaining overlap between plates is still large compared to the gap between them; specifically
where b− d/2 and d are both large compared to h [58, Sec. 8]. In this case the capacitance is
given at the top of [58, p. 350] as

K′

K
=

b−d/2
h

[
1+

2h
π(b−d/2)

{
1+ log(2β2

√
K′)
}]

, (F.4)

where the parameter β2 is found by solving the two equations at the bottom of p. 349 as follows.
First β1 is approximated by solving

4β 2
1 K′+1

4β 2
1 K′−1

=
b+d/2
b−d/2

(F.5)

in terms of K′, and then β2 is approximately

β2 =
4β1K′

4β 2
1 K′−1

. (F.6)

With β2 thus approximated in terms of K′, Eq. (F.4) still contains K′ on the right-hand side.
However, on the right K′ can be approximated as π(b− d/2)/(2h) [58]. The following MAT-
LAB function performs these computations.

function corr = largeoffsetlargeoverlap(b,h,d)

KprimeApprox = pi*(b-d/2)/(2*h); % used in RHS of Love's equation

beta1 = sqrt( b/( 2*d*KprimeApprox ) );
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beta2 = 4*beta1*KprimeApprox/( 4*beta1^2*KprimeApprox-1 );

corr = 1+2*h/( pi*( b-d/2 ) )*( 1+log( 2*beta2*sqrt(KprimeApprox) ) );

This function’s output is the factor in square brackets on the right-hand side of Eq. (F.4). Sample
values of this factor are tabulated at the end of [58, Sec. 8]. Note that there is a typographical
error in this table: the label d/b in the upper left corner should read d/2b, where 2b is the full
height of the plates. The above MATLAB script returns the tabulated values exactly, and the
COMSOL simulation returned values differing by less than 0.3% from these values.

F.3 Large displacement, small overlap
The third and last regime of interest computed by Love is for relatively short plates with a large
offset; specifically, where the displacement or offset d is large compared to the gap, but the
remaining overlap 2b−d is not [58, Sec. 9]. Once again the capacitance is c = ε0K′/K, where
in this regime K is approximately π/2 and K′ is found as follows. First the quantity v2 is found
by solving the transcendental equation found near the top of p. 351:

b−d/2
h

=
2
π
(v2− coth2v2) . (F.7)

With v2 thus known, K′ is given by the last equation on the same page:

eK′ =
π
√

2sinh2v2√
cosh2v2

b+d/2
h

. (F.8)

The following MATLAB function performs these computations.

function capacitance = largeoffsetsmalloverlap(b,h,d)

f=@(v2) -( b-d/2 )/h+2/pi*( v2-coth(2*v2) );

v2solution=fzero(f,1); % find zeros of f

Kprime=log( pi*sqrt(2)*sinh(2*v2solution)/sqrt( cosh(2*v2solution) )*...

( b+d/2 )/h );

capacitance = 8.854188*Kprime/( pi/2 ); % in picofarads
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As an example, Love states that if the offset is complete so that the overlap is exactly zero, and
b/h = 100, then the value of K′ is 7.4516 and the corresponding value of K′/K is 4.74. The
above MATLAB function produces the same result, and the COMSOL simulation returned a
capacitance of 4.875ε0 which is in reasonably good agreement.
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